
Frontend Optimization Report
The Project Name

Date of report completion
12nd June 2023

Table of Contents

Introduction.. 4
Reports summary...4

High priority.. 5
Important.. 5
Suggestions..5

Implementation impact.. 6
Report details... 8

1. Third-party scripts..8
💥 1.1 Missing async and defer attributes... 8
⚠ 1.2 Missing DNS prefetch and preconnect resource hints......................................9
🔥 1.3 Unnecessary third-party scripts are included..9
⚠ 1.4 Some third-party scripts have overlapping functionality..................................10
⚠ 1.5 Some scripts could be self-hosted.. 11
⚠ 1.6 Use web workers to load third-party scripts.. 11

2. Images... 12
🔥 2.1 Image are using old file formats (jpg, png, gif)..12
💥 2.2 Images are not using different size variants... 12
💥 2.3 Images outside the viewport are not lazy loaded..13
💥 2.4 LCP Image is not preloaded... 13
💥 2.5 Images have not defined size or aspect ratio... 14
🔥 2.6 Images are not properly cached... 15

3. Fonts..15
💥 3.1 Font files are not using optimal extension...15
⚠ 3.2 Font is not using subsets.. 16
💥 3.3 Font file is not preloaded...16
💥 3.4 Font-face have invalid font-display attribute value..17
🔥 3.5 Font-face declaration is not inlined... 17
⚠ 3.6 Font is not self-hosted...18

4. Chunks & Bundles... 18
🔥 4.1 App is not using chunk-splitting and code-splitting... 18
⚠ 4.2 Duplicated resources in chunks.. 19
💥 4.3 Lots of unused code in core chunks... 19

5. Styles...20
💥 5.1 Style files are loaded inefficiently..20
⚠ 5.2 Styles are not separated per viewport dimensions... 20
⚠ 5.3 Crucial styles are not considered Critical CSS... 21
🔥 5.4 App does not utilize content-visibility property.. 21
💥 5.5 Styles contains lots of unused code..22
⚠ 5.6 App uses expensive animation properties.. 22

6. Google Tag Manager (only if used)...23
🔥 6.1 Scripts are injected too early...23
🔥 6.2 Scripts are injected into <head> section... 23

2

⚠ 6.3 Website is using multiple GTM containers..24
⚠ 6.4 GTM container is heavy.. 25
🔥 6.5 GTM injects HTML into the code.. 25

7. React (only if used).. 26
⚠ 7.1 Components get re-rendered many times.. 26
🔥 7.2 Components are not code-split... 26
⚠ 7.3 Application is not utilizing memoization methods..27

8. Next.js (only if used).. 27
💥 8.1 App is not using Next/Image component.. 27
🔥 8.2 App is not using Next/Script component... 28
🔥 8.3 App is not using Next/Font component... 28

9. JavaScript... 29
🔥 9.1 App is not using modern browser API’s.. 29
🔥 9.2 App is not using throttle/debounce..29
🔥 9.3 App is running heavy computations.. 30
🔥 9.4 App is using a lot of memory...30

3

Introduction
! CHECK IF THE INTRODUCTION MATCHES THE BUSINESS’S NEEDS !

In the digital age, web applications are the cornerstones of many businesses' online presence.
They act as the first point of contact for potential customers, a key driver for engagement and

conversions, and as services at the heart of the business. The performance of a web application

is not just a technical metric — it is a critical factor that influences user satisfaction, search

engine rankings, and, ultimately, the success of a business.

This Frontend Optimization Report is designed to provide a comprehensive analysis and
actionable recommendations to enhance the performance of your web application, ensuring it

meets and exceeds the modern user's expectations. Performance optimization encompasses

various aspects, including but not limited to reducing page load times, improving responsiveness,

and ensuring smooth interactions.

This report will detail your web application's current performance metrics, identify bottlenecks
and areas for improvement, and provide a tailored set of recommendations to enhance its

frontend performance. We aim to equip you with the knowledge and action points needed to

create a superior online experience that meets and exceeds your users' expectations.

By implementing the optimizations outlined in this report, you can ensure that your website

stands out in a crowded digital landscape and delivers real business results through improved
performance, user satisfaction, and engagement.

Reports summary
! WRITE THE SUMMARY DEPENDING ON REPORT RESULTS, EXAMPLE BELOW !

Our comprehensive review has identified several critical areas where performance is
below industry standards, impacting user experience, conversion rates, and your digital
presence's overall effectiveness.

Our analysis indicates that your site's average page load time significantly exceeds the ideal

threshold of 2 to 3 seconds. This delay is primarily due to unoptimized images, excessive use of

JavaScript, and lack of efficient caching strategies, leading to decreased user engagement and

probably increased bounce rates. This inefficiency is particularly evident on mobile devices,

where network conditions can further exacerbate loading times.

We have also discovered that the web application can freeze under certain conditions due to

heavy computation being performed in the background. This makes the app unresponsive for a

fraction of second, which worsens the user experience and makes your web application less

4

appealing to potential customers. Encountering such problems may lead users to expect that

your business services could be similarly problematic.

Below, we listed all the issues identified during our analysis. These are categorized according to

the priority of addressing them, based on their impact on user experience and conversion rates.

In the later part of this report, each issue is described, and you can review the details of our

findings, including information about their business consequences and strategies for resolution.

High priority

1.1 💥 Missing async and defer attributes

2.3 💥 Images are not using different size variants

2.4 💥 Some third-party scripts have overlapping functionality

Important

1.1 🔥 Missing async and defer attributes

2.3 🔥 Images are not using different size variants

2.4 🔥 Some third-party scripts have overlapping functionality

Suggestions

1.2 ⚠ Images are not correctly cached

2.5 ⚠ Images are not using different size variants

2.6 ⚠ Some third-party scripts have overlapping functionality

5

Implementation impact
Implementing the recommended fixes identified in our analysis addresses immediate

performance issues and can significantly enhance your business outcomes. This section

outlines the key benefits of implementing the proposed changes, illustrating how each

contributes to building a stronger, more resilient, and profitable digital presence.

Better user experience

Optimizing the performance of your web application ensures that pages load quickly, which is

crucial for retaining visitors. A faster app reduces the likelihood of users leaving (bounce rate)

due to impatience, thereby increasing the chance of conversion. Moreover, a swift and smooth

experience fosters customer satisfaction, encouraging repeat visits and positive

word-of-mouth, which are invaluable for business growth.

GQ cut load time by 80% and saw an 80% increase in traffic. Median time spent on the
site also increased by 32%. (source)

Improved SEO results

Better performance has a real impact on how search engines will rate your website. Sites like

Google or Bing favor fast web applications, and thus performance improvements can

significantly increase the discoverability of web applications. Higher visibility in search results

directly correlates with increased traffic, potentially attracting more customers and elevating

your brand's online presence.

Rebuilding Pinterest pages for performance resulted in a 15% increase in SEO traffic
and a 15% increase in conversion rate to signup. (source)

Lower infrastructure costs

Optimizing content, compressing images, and minimizing the code on your website or

application reduces the amount of data transferred between the server and the user. This

decreased load means that servers can handle more concurrent users without compromising

on performance, delaying the need for additional server capacity or more powerful hardware

upgrades.

Netflix saw a 43% decrease in their bandwidth bill just after turning on GZip. (source)

Enhanced product quality

Prioritizing performance and maintainability sets a high standard for quality within the

development team. It encourages adopting best practices, thorough testing, and a proactive

approach to code health. This culture leads to a more bug-free application and makes the

application easier to maintain and extend over time, supporting business agility and innovation.

6

https://wpostats.com/tags/engagement/
https://medium.com/pinterest-engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7#.wwimdmkpp
https://wpostats.com/2015/11/04/netflix-bandwidth

“The value of high-quality code can be difficult to communicate. Some managers see it
as a boondoggle (...) since investing in code quality can slow development over the
short term and doesn’t appear to alter the user experience. But nothing could be
further from the truth.” (source)

Limited environmental impact🌿

Beyond the direct financial benefits, optimizing performance contributes to environmental

sustainability. A more efficient use of server resources translates into lower energy

consumption, which is not only good for the planet but also aligns with the growing consumer

expectation for businesses to operate sustainably.

Shaving off a single kilobyte in a file that is being loaded on 2 million websites reduces
CO2 emissions by an estimated 2950 kg per month. (source)

7

https://stackoverflow.blog/2021/10/18/code-quality-a-concern-for-businesses-bottom-lines-and-empathetic-programmers/
https://www.mightybytes.com/blog/web-performance-optimization-and-sustainability/

Report details

1. Third-party scripts

💥 1.1 Missing async and defer attributes

Description Script tags that include files from external servers should be loaded
in a way that doesn’t block executing the main application code. In
the tested application, we found third-party scripts that are loaded in
a synchronous way. Those script tags don’t have the async or defer
attributes.
Loading non-essential third-party scripts in a synchronous manner
may negatively impact the website by causing it to load needlessly
slowly or become non-responsive for a period of time after loading

Business
consequences

Longer loading times and application unresponsiveness make the
user experience worse. The product starts to look less appealing,
and the frustration grows. The likelihood of users abandoning the
purchase funnel or onboarding process increases.

COOK, a frozen meals company, increased its conversion rate by 7%
after cutting the average page load time by 0.85 seconds. The
bounce rate also fell by 7%, and pages per session increased by 10%.
(eggplantsoftware.com)

Suggestions Third-party script tags should have an async or a defer attribute,
depending on a number of factors, like whether the script's order of
execution is important or not. See:
● https://web.dev/efficiently-load-third-party-javascript/
● https://developer.mozilla.org/en-US/docs/Web/HTML/Element/sc

ript

Technical details ● Tool: Google Chrome
● Date: 28th March 2023
● Address: https://example.com
● Examples:

○ https://example.net/production/assets/something/very/long/u
rl/app.8Dt2ubp26j.js

○ https://example.net/production/assets/something/very/long/u
rl/app.8Dt2ubp26j.js

8

https://web.dev/efficiently-load-third-party-javascript/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

⚠ 1.2 Missing DNS prefetch and preconnect resource hints

Description When using third-party scripts, the browser can be informed to
connect with the external server as soon as possible using resource
hints dns-prefetch and preconnect, which helps with loading times of
those resources. We found third-party scripts in the tested
application but didn’t find resource hints for one or more external
servers.

Business
consequences

Excessive loading times of analytics scripts can result in missed
logging of some early user actions, which is bad for understanding
customers' behavior. This means that ad scripts may be displayed
very late, causing a late layout shift and thus worsening the user
experience. This can lead to an increase in the drop rate.

iCook improved the cumulative layout shift by 15% and saw a 10%
increase in ad revenue as a result. (web.dev)

Suggestions You should add resource hints dns-prefetch and preconnect, for
every domain that your web application is downloading scripts from,
for example, unpkg.com or googletagmanager.com.
● https://www.smashingmagazine.com/2019/04/optimization-perfor

mance-resource-hints/
● https://developer.mozilla.org/en-US/docs/Web/Performance/dns-

prefetch

Technical details ● Tool: Google Chrome
● Date: 28th March 2023
● Address: https://example.com
● Examples:

○ https://example.net/production/assets/something/very/long/url
/app.8Dt2ubp26j.js

○ https://example.net/production/assets/something/very/long/url
/app.8Dt2ubp26j.js

🔥 1.3 Unnecessary third-party scripts are included

Description Not all third-party scripts need to be included on page load. They
should be loaded by the application only when they are needed to
reduce the amount of data that the user is required to download.
For instance, in a multipage app, we shouldn't include an external
captcha script if the page doesn't have any forms that need
protection against bots. In a single-page app, this script could be lazy
loaded when a user navigates to a page with a form or even only after
they scroll to a relevant page section (for example, when the form is
not visible above the fold).
In the application we tested, we found examples of scripts like that

9

https://web.dev/vitals-business-impact/
https://www.smashingmagazine.com/2019/04/optimization-performance-resource-hints/
https://www.smashingmagazine.com/2019/04/optimization-performance-resource-hints/
https://developer.mozilla.org/en-US/docs/Web/Performance/dns-prefetch
https://developer.mozilla.org/en-US/docs/Web/Performance/dns-prefetch
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

being loaded before they are really needed.

Business
consequences

Including redundant scripts to early unnecessarily increases the
overall loading time of the application, thereby degrading the user
experience. This could detrimentally impact earnings without any
justifiable reason.

Rossignol.com improved their load time by 1.9 seconds and cut their
Speed Index by a factor of 10, contributing to a 94% improvement in
conversion rate when compared to the year prior. (fasterize.com)

Suggestions Third-party scripts not in use on specific pages should be removed.
It's important to determine which external scripts are required on
every page, and all other files should only be included as needed. To
take this a step further, the Intersection Observer API could be used
to download third-party scripts just as users scroll to a given section
of the page.
● https://developer.mozilla.org/en-US/docs/Web/API/Intersection_O

bserver_API
● https://web.dev/intersectionobserver/

Technical details ● Tool: Google Chrome
● Date: 28th March 2023
● Address: https://example.com/about.html
● The following scripts are loaded too early::

○ https://example.net/production/assets/something/very/long/url
/app.8Dt2ubp26j.js

⚠ 1.4 Some third-party scripts have overlapping functionality

Description Third-party scripts can enhance application functionalities, such as
analytics, user behavior recording, or adding video players from
popular services. To prevent the application from becoming too
heavy, it should utilize only one service from each category.

Business
consequences

Utilizing external scripts with overlapping functionalities can quickly
cause the application to become bloated in size. This can lead to
increased loading times, degrading the user experience, and thus
raising the likelihood of users abandoning the purchase funnel or
onboarding process.

SnipesUSA.com decreased page load speed by 30% and saw its
average conversion rate double to from 1% to 2%.
(digitalcommerce360.com)

Suggestions There should be a controlled list of external scripts used in the
application and the product owner should monitor is there is no
needless redundancy in the provided functionality, like for example,
two logging services.

10

https://www.fasterize.com/en/blog/fasterize-helps-rossignol-divide-its-web-page-load-time-by-10/
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://web.dev/intersectionobserver/
https://example.com/about.html
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://www.digitalcommerce360.com/2020/10/07/snipesusa-invests-in-site-speed-now-and-for-the-future/

Technical details ● Tool: Google Chrome
● Date: 28th March 2023
● Address: https://example.com/about.html
● Overlapping services:

○ Live chats: Foo Chat, Bar Chat
○ Ads: Google AdSense, Example Ads Service

⚠ 1.5 Some scripts could be self-hosted

Description Third-party scripts can sometimes be self-hosted and delivered from
the same server as the application. This approach may improve
download times and allow for better control over caching.

Business
consequences

Self-hosting third-party scripts means your server has to send more
data, but it facilitates improved caching. This can speed up the
application's load time, enhancing user experience and potentially
increasing conversions.

Suggestions Consider revising the caching headers for some third-party scripts
used by your application. If certain files are downloaded from the
server too frequently, you might want to consider rehosting them on
your own server with an improved caching configuration, either via a
CDN or through modifications to the server config files.

Technical details ● Tool: Google Chrome
● Date: 28th March 2023
● Address: https://example.com/about.html
● Potential files:

○ https://example.net/production/assets/something/very/long/url
/app.8Dt2ubp26j.js

⚠ 1.6 Use web workers to load third-party scripts

Description Scripts can be loaded using web workers. This approach is beneficial
for loading third-party scripts because then they don’t impact the
application's main thread. Web workers operate in a separate thread.
As a result, the application's rendering speed is improved.

Business
consequences

Third-party scripts are often non-essential, but loading, parsing, and
executing them may render the app unresponsive to the user during
the initial few seconds. This can degrade the user experience, which
may in turn harm the application's revenue.

Suggestions Consider using the Partytown library to shift the loading of third-party

11

https://example.com/about.html
https://example.com/about.html
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://partytown.builder.io/

scripts from the main thread to web workers.

Technical details ● Tool: Google Chrome
● Date: 28th March 2023
● Address: https://example.com/about.html
● Examples:

○ https://example.net/production/assets/something/very/long/url
/app.8Dt2ubp26j.js

2. Images

🔥 2.1 Image are using old file formats (jpg, png, gif)

Description During the investigation we’ve found many images that are using
old-gen file formats like JPG, PNG.
There is a room for improvements, by converting them to WebP,
reducing their size significantly.

WebP lossless images are 26% smaller compared to PNGs. WebP
lossy images are 25�34% smaller than comparable JPEG images at
equivalent SSIM quality index.
(https://developers.google.com/speed/webp)

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Images should use next-gen format like WebP or JPEG�2000, which
are significantly lighter than traditional PNG or JPG. We can use either
online converts for it, or convert it in code using NPM packages.
● https://cloudconvert.com/webp-converter
● https://www.npmjs.com/package/sharp

Technical details ● Tool: WebPageTest
● Date: 21st May 2023
● Address: https://example.com
● Examples: https://example.net/production/assets/something

💥 2.2 Images are not using different size variants

Description Application is not using smaller image variants on mobile and tablet
devices. Because of that, the website is fetching full size images on
smaller viewport, which leads to overload of resources.

12

https://example.com/about.html
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://developers.google.com/speed/webp
https://cloudconvert.com/webp-converter
https://www.npmjs.com/package/sharp
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Each image should have multiple size variants generated, to be
served on different breakpoints. They should be served either by
using <picture> tag or tag with imgSrc and sizes attributes.
The browser will be responsible for loading the proper variant on each
viewport size.
To generate multiple variants out of a single source image, use:
● https://www.npmjs.com/package/sharp

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

💥 2.3 Images outside the viewport are not lazy loaded

Description During the initial load of the application, many images which are
placed outside the initial viewport were loaded. This leads to more
resources download at the very beginning of the load process, which
slows down the app.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Images that are Below The Fold (BTF) or outside the initial viewport,
should be lazy loaded, to limit the amount of resources downloads
during the initial app load.
To achieve that, use native browser lazy loading by adding lazy
attribute to those tags
● https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_

loading

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

💥 2.4 LCP Image is not preloaded

13

https://www.npmjs.com/package/sharp
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading
https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

Description Image recognized as Largest Contentful Paint (LCP) was not
preloaded, which means that the browser will only start fetching this
image, when it encounters it during the parsing process.
Because of that, many other less crucial resources would be
downloaded before, which would impact the LCP metric.

Business
consequences

LCP is one of the crucial Core Web Vitals metric. It impacts 25% of the
whole Performance metric score.
The longer the metric is, the worse is the Core Web Vitals score is,
which can impact UX of the app, as well as revenue and SEO.

Suggestions An image that is considered LCP by Lighthouse should be preloaded,
to speed up it’s download time and priority.

To achieve that, use native browser <link> tag with rel=”preload”
attribute
● https://web.dev/preload-responsive-images/

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

💥 2.5 Images have not defined size or aspect ratio

Description Images does not have either width and height or aspect-ratio
attributes defined. This might lead to layout shifts.

Business
consequences

Images without statically defined width and height or aspect-ratio
attributes might cause shifts in layout, otherwise known as
Cumulative Layout Shift (CLS).
This metric impacts both UX leading to unexpected user behavior,
and the Lighthouse Performance score.

Suggestions Each image should have width and height statically defined if it’s
known, or at least aspect-ratio attribute. In this way, browser would
preserve needed space for image to load, without any unexpected
CLS.
● https://developer.mozilla.org/en-US/docs/Web/CSS/aspect-ratio
● https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com

14

https://web.dev/preload-responsive-images/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://developer.mozilla.org/en-US/docs/Web/CSS/aspect-ratio
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://example.com

● Examples:https://example.net/production/assets/something

🔥 2.6 Images are not properly cached

Description Images on the website does not have proper caching policy set up.
This leads to fetching the resources multiple times during multiple
visits to the application.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Images should be cached for as long as possible.

There are many CDN providers out there:
● https://cloudinary.com/
● https://www.cloudflare.com/cdn/
● https://www.twicpics.com/product/image

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

3. Fonts

💥 3.1 Font files are not using optimal extension

Description Font files are not using .woff2 extension, which usually is much lighter
than .woff, .ttf or .eot extensions.

Business
consequences

The longer it takes to load a dedicated font, the bigger possibility
there is for Flash Of Unstyled Text (FOUT), which leads to bad UX and
possibly even a CLS.

Suggestions Replace the font files with .woff2 extension.

Either find a proper files on the internet or use font converters.
● https://www.fontconverter.io/en
● https://web.dev/reduce-webfont-size/

15

https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://cloudinary.com/ip/gr-sea-gg-brand-home-base?campaignid=17601148700&adgroupid=141182782954&keyword=cloudinary&device=c&matchtype=e&adposition=&gad=1
https://www.cloudflare.com/cdn/
https://www.twicpics.com/product/image
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://www.fontconverter.io/en
https://web.dev/reduce-webfont-size/

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

⚠ 3.2 Font is not using subsets

Description The font, app is using offers subsets, which are smaller version of a
given font with limited number of glyphs. For example latin subset will
only contain latin letters and characters.

Business
consequences

The longer it takes to load a dedicated font, the bigger possibility
there is for Flash Of Unstyled Text (FOUT), which leads to bad UX and
possibly even a CLS.

Suggestions Check whether the font you are using offers subsets suitable for the
app needs, and replace the source files with them.
● https://fonts.google.com/knowledge/glossary/subsetting

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

💥 3.3 Font file is not preloaded

Description Font files are not preloaded, which extends its download time.

Business
consequences

The longer it takes to load a dedicated font, the bigger possibility
there is for Flash Of Unstyled Text (FOUT), which leads to bad UX and
possibly even a CLS.

Suggestions If the font-face declaration is not inlined then the preload is a
must-have.
In other cases, it’s nice to have.
Add the preload resource hint to font links.
● https://web.dev/codelab-preload-web-fonts/

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

16

https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://fonts.google.com/knowledge/glossary/subsetting
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://web.dev/codelab-preload-web-fonts/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

💥 3.4 Font-face have invalid font-display attribute value

Description Font-face declaration is not using swap value of font-display
attribute.
Swap value has extremely small block period and an infinite swap
period which means that fallback font will be displayed until the
dedicated font loads. This eliminates FOUT and CLS

Business
consequences

The longer it takes to load a dedicated font, the bigger possibility
there is for Flash Of Unstyled Text (FOUT), which leads to bad UX and
possibly even a CLS.

Suggestions Change the font-display value to swap
● https://developer.chrome.com/blog/font-display/

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

🔥 3.5 Font-face declaration is not inlined

Description Font-face declaration is not optimal and slower.

Business
consequences

The longer it takes to load a dedicated font, the bigger possibility
there is for Flash Of Unstyled Text (FOUT), which leads to bad UX and
possibly even a CLS.

Suggestions The optimal way of declaring font-face is inlining them in <style> tag
in the <head> section of the DOM.
This makes it Critical CSS.
● https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face#s

pecifying_a_downloadable_font
● https://www.smashingmagazine.com/2015/08/understanding-criti

cal-css/

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

17

https://developer.chrome.com/blog/font-display/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face#specifying_a_downloadable_font
https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face#specifying_a_downloadable_font
https://www.smashingmagazine.com/2015/08/understanding-critical-css/
https://www.smashingmagazine.com/2015/08/understanding-critical-css/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

⚠ 3.6 Font is not self-hosted

Description Font files are hosted on a 3rd party server. This adds additional
external request �DNS-lookup, SSL Negotiation, TCP handshake)
which adds time to download.

Business
consequences

The longer it takes to load a dedicated font, the bigger possibility
there is for Flash Of Unstyled Text (FOUT), which leads to bad UX and
possibly even a CLS.

Suggestions Font files should be downloaded from the same origin as the
application, to remove the need for external requests.
● https://web.dev/patterns/web-vitals-patterns/fonts/font-self-host

ed/

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

4. Chunks & Bundles

🔥 4.1 App is not using chunk-splitting and code-splitting

Description App bundles are big, and it takes a long time to download them.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions App chunks should be separated into smaller ones.

This can be achieved by either chunks-splitting or code-splitting
● https://webpack.js.org/plugins/split-chunks-plugin/#optimizations

plitchunks
● https://webpack.js.org/guides/code-splitting/

Technical details ● Tool: bundle-wizard
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

18

https://web.dev/patterns/web-vitals-patterns/fonts/font-self-hosted/
https://web.dev/patterns/web-vitals-patterns/fonts/font-self-hosted/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://webpack.js.org/plugins/split-chunks-plugin/#optimizationsplitchunks
https://webpack.js.org/plugins/split-chunks-plugin/#optimizationsplitchunks
https://webpack.js.org/guides/code-splitting/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

⚠ 4.2 Duplicated resources in chunks

Description A couple of libraries like X or Y are duplicated across multiple chunks.
This leads to redundant resources downloads, which only extends the
app load time.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Libraries X and Y should be separated into their own chunk, and this
should be the only place where its code is loaded.

To achieve that, we can configure Webpack to merge chunks into
single bundle
● https://webpack.js.org/configuration/optimization/#optimizationm

ergeduplicatechunks

Technical details ● Tool: bundle-wizard
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

💥 4.3 Lots of unused code in core chunks

Description In core chunk X, there is X% of unused code, which extends the size
of it unnecessarily.
Core chunks with most crucial functionalities and code should load as
soon as possible, and should be as lean as possible.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Code-split the part of the chunk that is not being used by it.
See:
● https://webpack.js.org/guides/code-splitting/

Technical details ● Tool: bundle-wizard
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

19

https://webpack.js.org/configuration/optimization/#optimizationmergeduplicatechunks
https://webpack.js.org/configuration/optimization/#optimizationmergeduplicatechunks
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://webpack.js.org/guides/code-splitting/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

5. Styles

💥 5.1 Style files are loaded inefficiently

Description CSS files are render blocking resources, so it’s crucial to load them
efficiently, to not extend the load time of the application.

Business
consequences

Slow CSS loading can lead to bad UX, where Flash Of Unstyled
Content (FOUC) can appear. Additionally, core Performance metrics
like First Contentful Paint (FCP) can suffer.

Suggestions CSS files should be loaded via <link> tags in the <head> section of
the DOM.
If you have multiple files with CSS, you should aim to @import them
in the root CSS file.
See:
● https://developer.mozilla.org/en-US/docs/Web/CSS/@import
● https://www.quickonlinetips.com/archives/2013/05/css-files-load-

faster/

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

⚠ 5.2 Styles are not separated per viewport dimensions

Description Styles specific for given breakpoints can be separated to different
files, which could later on be fetched only on matching viewport size.
This would result in decreasing the amount of CSS loaded in the app,
which would be faster.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Consider splitting CSS into different files per breakpoints.
You don’t have to do it manually there are packages out there, which
automates this process:
● https://github.com/SassNinja/media-query-plugin
● https://github.com/SassNinja/postcss-extract-media-query

Later on, you can use @import statement with media queries
condition to load:

20

https://developer.mozilla.org/en-US/docs/Web/CSS/@import
https://www.quickonlinetips.com/archives/2013/05/css-files-load-faster/
https://www.quickonlinetips.com/archives/2013/05/css-files-load-faster/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://github.com/SassNinja/media-query-plugin
https://github.com/SassNinja/postcss-extract-media-query

⚠ 5.2 Styles are not separated per viewport dimensions

Description Styles specific for given breakpoints can be separated to different
files, which could later on be fetched only on matching viewport size.
This would result in decreasing the amount of CSS loaded in the app,
which would be faster.

● https://developer.mozilla.org/en-US/docs/Web/CSS/@import

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

⚠ 5.3 Crucial styles are not considered Critical CSS

Description Styles, necessary for rendering initial viewport, should be considered
as Critical CSS to be loaded as soon as possible.
Inlining styles in <style> tag in <head> section of the DOM,
eliminates the need for external requests and speeds up the
rendering process.

Business
consequences

Slow CSS loading can lead to bad UX, where Flash Of Unstyled
Content (FOUC) can appear. Additionally, core Performance metrics
like First Contentful Paint (FCP) can suffer.

Suggestions Styles needed for content Above The Fold (ATF) should be extracted
to a separate inlined declaration in <style> tag, under <head>
section of the DOM.

See:
● https://web.dev/extract-critical-css/

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

🔥 5.4 App does not utilize content-visibility property

Description The content-visibility property, enables the user agent to skip an
element's rendering work, including layout and painting, until it is
needed.

21

https://developer.mozilla.org/en-US/docs/Web/CSS/@import
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://web.dev/extract-critical-css/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

Business
consequences

The more resources our application have to render, the longer the
load time will be.

Suggestions For the elements that are Below The Fold (BTF) use the
content-visibility property, to limit renders during the initial load
See:
● https://developer.mozilla.org/en-US/docs/Web/CSS/content-visibil

ity
● https://web.dev/content-visibility/

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

💥 5.5 Styles contains lots of unused code

Description Much of the CSS code which is fetched is not used on given page.
This leads to heavier files, and more resources usage.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Try to eliminate as much of unused CSS as possible.
Chrome DevTools can help you with identifying percentage of usage
of specific files. Or you can try automating this by using npm
packages like purgecss.
See:
● https://developer.chrome.com/docs/lighthouse/overview/
● https://purgecss.com/

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

⚠ 5.6 App uses expensive animation properties

Description Some of the animations used in the app are causing Layout and Paint
phase recalculations which are impacting the website Performance.

22

https://developer.mozilla.org/en-US/docs/Web/CSS/content-visibility
https://developer.mozilla.org/en-US/docs/Web/CSS/content-visibility
https://web.dev/content-visibility/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://developer.chrome.com/docs/lighthouse/overview/
https://purgecss.com/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

Business
consequences

Animations which are not smooth might cause bad UX and users
frustrations.

Suggestions Adjust current animations so that they use rather opacity, filter or
transform properties, which are not causing any side effects in the
rendering process.
Additionally, try to use will-change property, for further performance
gains.
See:
● https://web.dev/animations-guide/
● https://developer.mozilla.org/en-US/docs/Web/Performance/CSS_

JavaScript_animation_performance
● https://developer.mozilla.org/en-US/docs/Web/CSS/will-change

Technical details ● Tool: Lighthouse
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

6. Google Tag Manager (only if used)

🔥 6.1 Scripts are injected too early

Description Google Tag Manager offers lots of different trigger types (events on
which the tag would be executed).
Choosing a proper one have a great impact on Performance.

Business
consequences

Scripts loaded via Google Tag Manager shouldn’t interfere with
website Performance. The earlier the script is loaded, the higher
chance is that it will block other crucial resources from executing,
which might cause in a longer wait time for the user and drop in
conversion.

Suggestions The rule of thumb for scripts loaded via Google Tag Manager is to
load them as late as possible.
Majority of the scripts should use Window Loaded trigger type, so
they’ll be injected after the performance is already measured.
See:
● https://support.google.com/tagmanager/answer/7679319?hl=en
● https://web.dev/tag-best-practices/

Technical details ● Tool: Chrome DevTools
● Date: 21st May 2023

23

https://web.dev/animations-guide/
https://developer.mozilla.org/en-US/docs/Web/Performance/CSS_JavaScript_animation_performance
https://developer.mozilla.org/en-US/docs/Web/Performance/CSS_JavaScript_animation_performance
https://developer.mozilla.org/en-US/docs/Web/CSS/will-change
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://support.google.com/tagmanager/answer/7679319?hl=en
https://web.dev/tag-best-practices/

● Address: https://example.com
● Examples:https://example.net/production/assets/something

🔥 6.2 Scripts are injected into <head> section

Description Lots of 3rd party providers want their script to be injected as soon as
possible. As a result, they often provide a code snippet for script
injection, where their script is injected as the first one, on the top of
the <head> section.
Usually, by the time Google Tag Manager container was executed on
the website, the <head> section of the DOM was already parsed.
Injecting anything into it after the initial parse, would force the
browser to re-calculate and reparse it once again, which takes time.

Business
consequences

All the DOM calculations like painting, rendering, parsing takes time.
Extending it, would slow down the website, and influence the
performance score.

Suggestions Avoid injecting scripts into the <head> section. Instead, inject them at
the end of the <body> section, where it would not cause any extra
work for the browser.

See:
● https://web.dev/tag-best-practices/

Technical details ● Tool: Chrome DevTools
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

⚠ 6.3Website is using multiple GTM containers

Description Using multiple containers on a single page can create significant
performance issues as it introduces additional overhead and script
execution. At the very least, it duplicates the core tag code itself
which, as it is delivered as part of the container's JavaScript, cannot
be reused between the containers.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Try to eliminate extra containers, and load only one.
See:

24

https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://web.dev/tag-best-practices/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

● https://web.dev/tag-best-practices/

Technical details ● Tool: Chrome DevTools
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

⚠ 6.4 GTM container is heavy

Description The size of a container is determined by its tags, triggers, and
variables. Although a small container may still negatively impact page
performance, a large container almost certainly will.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Try to keep the container size as small as possible. Remove
duplicated and not used tags, triggers and variables.
The recommended size is below 140kb.
See:
● https://web.dev/tag-best-practices/

Technical details ● Tool: Chrome DevTools
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

🔥 6.5 GTM injects HTML into the code

Description Google Tag Manager allows us to inject custom HTML code into DOM
of the application.
This might be dangerous, if the content gets injected Above The Fold
(ATF�, because it could generate a Cumulative Layout Shift (CLS).

Business
consequences

Cumulative Layout Shift (CLS) is one of the key Lighthouse
Performance metrics. Keeping it low increases the overall score of our
application.
Additionally, it has a great impact on the User Experience (UX), and
might lead to user frustration or unintentional behavior.

Suggestions Avoid injecting HTML code into the app through GTM tags.

25

https://web.dev/tag-best-practices/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://web.dev/tag-best-practices/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

See:
● https://web.dev/tag-best-practices/

Technical details ● Tool: Chrome DevTools
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

7. React (only if used)

⚠ 7.1 Components get re-rendered many times

Description Re-renders in React happens whenever there is a change in the
component and the UI needs to be updated.

Business
consequences

Renders in React are fast, but not immediate. The more times the
component gets re-rendered, the more time it would take.
This might cause lower Performance metrics as well as worse UX of
the application

Suggestions Investigate core components which are re-rendered the most using
tools like:
● https://react.dev/learn/react-developer-tools
● https://github.com/welldone-software/why-did-you-render

And try to eliminate as much of them as possible.

Technical details ● Tool: React DevTools
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

🔥 7.2 Components are not code-split

Description React allows us to code-split the code into separate JS chunks. And
load them on demand, whenever user needs them. This reduces the
amount of resources that have to be downloaded during the initial
load of our app.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more

26

https://web.dev/tag-best-practices/
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://react.dev/learn/react-developer-tools
https://github.com/welldone-software/why-did-you-render
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

of their mobile data resources to access our website.

Suggestions Try to code-split components that are only showed on user
interaction (onClick, onScroll etc..). Components like Modals,
Dropdowns or Accordions are perfect candidates to be split into
separate chunks.
See:
● https://legacy.reactjs.org/docs/code-splitting.html

Technical details ● Tool: Chrome DevTools
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

⚠ 7.3 Application is not utilizing memoization methods

Description React provides a couple of memoization methods which should
reduce the amount of re-renders and should improve speed of given
method execution.

Business
consequences

Renders in React are fast, but not immediate. The more times the
component gets re-rendered, the more time it would take.
This might cause lower Performance metrics as well as worse UX of
the application

Suggestions Utilize React memoize methods to improve performance, and reduce
the amount of rerenders.

See:
● https://react.dev/reference/react/useMemo
● https://react.dev/reference/react/useCallback
● https://react.dev/reference/react/memo

Technical details ● Tool: Chrome DevTools
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

27

https://legacy.reactjs.org/docs/code-splitting.html
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://react.dev/reference/react/useMemo
https://react.dev/reference/react/useCallback
https://react.dev/reference/react/memo
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

8. Next.js (only if used)

💥 8.1 App is not using Next/Image component

Description Next.js shares a custom image component, which handles various
performance optimizations like lazy loading, preloading, conversion to
.webp and generating different size variants.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Use dedicated Next/Image component for all the images in the app if
not using any other form of optimizations.
See:
● https://nextjs.org/docs/pages/api-reference/components/image

Technical details ● Tool: React DevTools
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

🔥 8.2 App is not using Next/Script component

Description Next.js shares a custom script component, which handles various
performance optimizations like lazy loading, preloading and different
loading strategies.

Business
consequences

The more resources our application have to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Use dedicated Next/Script component for all the scripts in the app if
not using any other form of optimizations.
See:
● https://nextjs.org/docs/pages/api-reference/components/script

Technical details ● Tool: React DevTools
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

28

https://nextjs.org/docs/pages/api-reference/components/image
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js
https://nextjs.org/docs/pages/api-reference/components/script
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

🔥 8.3 App is not using Next/Font component

Description Next.js shares a custom font component, which handles various
performance optimizations like preloading, subsets, font-display and
more.

Business
consequences

The longer it takes to load a dedicated font, the bigger possibility
there is for Flash Of Unstyled Text (FOUT), which leads to bad UX and
possibly even a CLS.

Suggestions Use dedicated Next/Font component for all the fonts in the app if not
using any other form of optimizations.
See:
● https://nextjs.org/docs/pages/api-reference/components/font

Technical details ● Tool: React DevTools
● Date: 21st May 2023
● Address: https://example.com
● Examples:https://example.net/production/assets/something

9. JavaScript

🔥 9.1 App is not using modern browser API’s

Description Modern browsers API’s are offering a lot of functionalities which helps
us to resolve a lot of common issues. Using these functionalities
instead of external dependencies can lead to smaller bundle size.

Business
consequences

The more resources our application has to download, the longer the
load time will be. Additionally, our clients would have to spend more
of their mobile data resources to access our website.

Suggestions Use a browser API instead of these dependencies:
● lodash.filter
● …

Technical details ● In foo.ts you are using lodash.filter, use Array.filter instead
● Date: 19th September 2023
● File path: src/users/utils/foo.ts

🔥 9.2 App is not using throttle/debounce

29

https://nextjs.org/docs/pages/api-reference/components/font
https://example.com
https://example.net/production/assets/something/very/long/url/app.8Dt2ubp26j.js

Description Reducing the number of code calls may have a positive impact on the
CPU and the number of requests.

Business
consequences

The more CPU applications are using and the more requests it’s doing
there’s a higher possibility for bad UX due to performance.

Suggestions Use throttle/debounce

Technical details ● There’s a code running on each scroll event, application’s
performance is suffering because of missing throttle/debounce on
scroll event

● Date: 19th September 2023
● File path: src/components/table/utils.ts

🔥 9.3 App is running heavy computations

Description Heavy computations may perform very poorly on low-end devices.

Business
consequences

The more CPU applications are using there’s a higher possibility for
bad UX due to performance.

Suggestions Look for algorithm improvements for reducing the number of
operations/memory required.
Use console.time to measure time needed to execute given part of
code

Technical details ● You’re having an algorithm that does a lot of insertion/removing in
the middle of array, this could be improved by using better data
structure

● Consider using Linked List
● Date: 19th September 2023
● File path: src/utils/insert-foo.ts
● File path: src/utils/remove-foo.ts

🔥 9.4 App is using a lot of memory

Description Overusing immutable data structures can lead to a lot of junk memory
being created.

Business
consequences

The more memory and CPU applications are using there’s a higher
possibility for bad UX due to performance.

Suggestions Stop using spread operator in reduce

30

Technical details ● You’re having a reduce that runs a lot of times, on each iteration it
spreads the result creating a lot of junk memory

● Consider using non-immutable data structure
● Date: 19th September 2023
● File path: src/utils/bar.ts

31

