
State of 
Frontend
2022



Table of content

02

01 Intro    03

Is frontend tired of new trends, and looking for stability?    

04 Libraries    16

Redux & Lodash – widely used, liked, and… disliked? 

05 TypeScript 24

Typescript continues to make web development less frustrating

06 Static-site generators 28

SSG solutions are on the rise    

07 Hosting 31

Deployment. Will mass migration to the cloud mean the end of traditional hosting?    

08 Micro Frontends 35

Micro Frontends are on their way to maturity    

03 Frameworks 12

Developers choose frameworks with good practices in mind   

02 Developers & work conditions    06

For software engineering, the biggest change over the past few years has been remote 

09 Browser technologies    38

What’s up with 42% to WebSockets? I’d expected it to hit less than 5%    

12 Good practices    47

Good practices are not one size fits all - they depend on your team

13 Future of frontend 54

The frontend may be entering a stability phase

     BIOs 59

Meet our expert commentators   

11 Testing 44

Positive surprises in the state of testing: frontend developers have never tested more!   

10 Code management    41

Browser editors are on the rise. Is this just an effect of remote work?    



Is frontend tired of new trends, 
and looking for stability? 

Chapter 01  Intro

Aleksandra Dabrowska
report’s Editor-in-Chief



04State of Frontend 2022   

The last two years haven’t been the easiest and promp-

ted a lot of changes globally. The IT industry was direc-

tly engaged in digital transformation since life as we 

knew it basically moved online. Frontend development 

was also subject to change – from technologies to good 

practices and working conditions.

It seems that the most famous frontend development 

joke “new day, new framework” has aged poorly. Sure, 

new frameworks and libraries do emerge but the race 

towards trendy innovations slowly gives way to maturi-

ty and stability in certain areas. 

The goal for the State of Frontend is still the same – 

we want to see the real day-to-day perspective from 

frontend professionals of all levels and backgrounds. 

Inside you’ll find answers to which technologies we love 

to hate but still use, which practices are sacred and 

which are neglected, and what future people see for 

themselves and the frontend landscape.

We’re excited to see a varied representation of fron-

tend specialists, as our respondents come from 125 dif-

ferent countries! We hope that in the future we’ll mana-

ge to expand our reach even further. 

Chapter 01 Intro

3703
survey filled in

125
countries represented

Report in numbers

19
frontend experts comments



05State of Frontend 2022   

On top of that, we’ve invited 18 contemporary frontend 

experts to share their thoughts and comment on survey 

results. Their insights are not only a fact-of-the-matter 

source of knowledge but will also provide you with food 

for thought on different frontend development topics. 

Shout out to each and every one of our commentators - 

the report wouldn’t be so awesome without your know-

ledge and experience. Show them some appreciation, 

and meet them in the bio section below. 

We encourage you to actively participate in the result 

analysis too! If we know anything about frontend folks 

it’s that everybody has their opinions and rarely keeps 

them to themselves – which is great because it pushes 

the entire industry forward. Every diagram and table 

has a “share” button, in case you want to start a discus-

sion with your friends or share only one specific data 

point of the report.     

Finally, a big “thank you” to all 3703 frontend people 

who filled the survey – without you, there would be no 

report!

 

Chapter 01 Intro



For software engineering, the 
biggest change over the past 
few years has been remote work

Gergely Orosz
The Pragmatic Engineer, author

Chapter 02   Developers & work conditions



07

A whopping 56% of respondents reported working remotely, and only 5% of them 

work in the office. The concept of mass remote work is so new that the survey in 

2020 did not even measure this data point.

The big question for the year is whether full-remote work will be here to stay, or 

we’ll see hybrid work gain more popularity. Most engineers clearly prefer wor-

king remotely – there’s no commute involved, there are fewer distracting taps on 

the shoulder. However, it remains a challenge to share information and replicate 

spontaneous discussions that have existed in the office

Chapter 02 Developers & work conditions

State of Frontend 2022   

It’s not just frontend engineers who do 
frontend development

This year, some of the job titles people doing frontend development shared in 

the “other” option included:

How does your work look like now?

Remote only

35.3%

5%

59.7%

Hybrid Office 

A bootcamp student just starting out learning frontend,

A self-taught developer studying at a non-technical university who fell in 

love with frontend,

A product manager who sometimes pushes code to production,

Developer advocate who helps out the frontend team every now and then,



08

Chapter 02 Developers & work conditions

State of Frontend 2022   

This should be of no surprise: but it’s always a nice reminder of how frontend is an 

accessible area and one where it’s still common enough to get involved without 

much frontend background.

Frontend development architect,

Design system director,

A designer who also codes,

Graphic designer & developer,

Head of Everything: a one-person developer shop doing everything, including 

frontend development.

27% of respondents reported working at a company with more than 50 front-end 

engineers. At the same time, 30% of developers shared how 5 or fewer frontend 

developers work at their company. 50% of respondents work at companies with 10 

or more frontend engineers.

This statistic shows an interesting duality. There are almost as many frontend en-

gineers who work at companies with massive frontend teams as there are ones 

working on few-person teams or alone.

Working within larger frontend teams is 
becoming more common

A few months 5.7%

More than 1 year 18.9%

More than 3 years 22.8%

More than 10 years 24.1%

More than 5 years 28.4%

How long have you been in the frontend development game?



09

Chapter 02 Developers & work conditions

State of Frontend 2022   

The developer experience and the expectations at these companies are vastly 

different. Large companies will have developer experience and frontend platform 

teams more often. Mentorship is more common. In smaller places, a lot more is 

down to each developer, and there are fewer options to get feedback. As a fron-

tend engineer, I’d recommend, over time, working in both environments to ma-

ximize learning.

The statistic of 50% of frontend engineers working at companies with 10 or more 

frontend developers, and 27% of them at places with 50 or more, could also be an 

interesting prompt for teams building tools for larger frontend teams. There seem 

to be a growing number of these places.

Only 18% of people filling out the survey said they work at non-tech-first compa-

nies. 82% identified as working at a software development company, developer 

agency, or tech-first or digital-first companies. It’s hard to tell if the survey didn’t 

reach people who work at more traditional companies, or there really are more 

engineers working at places where software is core to the business.

Either way, it’s worth keeping in mind that the survey results come overwhelmin-

gly from places where tech and software are more of a profit than a cost center.

Few engineers filling out the survey 
work at non-tech companies 

How would you describe your current status?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Mid-level Senior developer Lead developer Junior developer Head of technology

Chief technology officer Other



10

Chapter 02 Developers & work conditions

State of Frontend 2022   

What’s the size of the company you work in?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

51-200 employees 11-50 employees 2-10 employees 201-500 employees

I’m a one-person company/freelancer

501+ employees

50-100 9%

More than 100 18.2%

5-10 19.9%

10-50 23.8%

Less than 5 29.2%

How many frontend developers are there at your company?



11

Chapter 02 Developers & work conditions

State of Frontend 2022   

Other 2.9%

Government organization 1.9%

Non-tech-first company 12.3%

Tech-first / digital-first company 41.2%

Software development company / developer agency 41.6%

Which one of the following best describes your company?



Developers choose frameworks 
with good practices in mind

Chapter 03 Frameworks

Sébastien Chopin
CEO at NuxtLabs & author of Nuxt



13

For me, the story of 2022 results is the rise of frameworks. It seems that develo-

pers are increasingly looking to meta frameworks to help them work faster and 

with greater confidence. The survey reveals that respondents are increasingly 

likely to be concerned with following best practices (e.g. performance and end-

-user experience) which completely explains this rising move toward meta fra-

meworks.

Accessibility is a major focus for respondents this year, with 63% predicting it will 

gain in popularity over the coming years. Frameworks tend to provide different 

ways to solve this, with some notable examples including Next/Nuxt Image, HT-

ML-validator, and WebHint. The Chrome Aurora team is working with meta fra-

meworks such as Angular, Next, and Nuxt to make sure they implement these best 

practices. I predict we will likely see continued improvement from all these major 

frameworks in the upcoming years.

Component-driven development is also embraced by most developers, which 

makes sense given the popularity of React, Vue, and Svelte, and even web com-

ponents (as in this year’s indie success story - Wordle).

State of Frontend 2022   

Chapter 03 Frameworks

Over the past year, which of the following frameworks have you 
used and liked?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

React

Ember.js

Next.js Vue.js Angular Svelte Gatsby Nuxt.js Remix

Other Backbone



14

Progressive web applications are gaining popularity as well, with developers keen 

to make the most of cross-platform development using the same core codebase. 

We are also seeing groups like Open Web Advocacy push Apple to embrace the 

open web. This is definitely a space to follow.

Headless CMS is also advancing, with greater adoption and more integration into 

frameworks. Close to home for me, new Prismic, Strapi, Sanity, Storyblok, and 

Directus modules have already been released for Nuxt 3, working with zero con-

figuration.

I also noticed another trend that is not mentioned explicitly in this survey. Edge 

rendering was initially driven by CloudFlare and its worker platform. It’s no ac-

cident that most of the deployment targets on the survey have released or im-

plemented their own serverless or edge functions, and this is being quickly ad-

opted by users. Frameworks such as Nuxt 3, Remix, or Sveltekit are moving in 

this direction, enabling on-demand rendering directly at the CDN level. With the 

corresponding gains in decreased latency and lower cost for server-rendered 

applications, it’s my prediction that this will be a big focus for 2023.

Chapter 03 Frameworks

State of Frontend 2022   

Over the past year, which of the following frameworks have you 
used and disliked?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Angular

Nuxt.js

React Gatsby Vue.js Backbone.js Ember.js Next.js Svelte

Other Remix



15

Chapter 03 Frameworks

State of Frontend 2022   

Which of the following frameworks would you like to learn in the 
future?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Svelte

Ember.js

Remix Next.js Vue.js React Nuxt.js Gatsby Angular

Other Backbone



Redux & Lodash – widely used, 
liked, and… disliked?

Chapter 04  Libraries

Andrzej Wysoczanski
Head of Frontend at The Sofware House



17

Chapter 04 Libraries

State of Frontend 2022   

Whatever you think about Redux and Lodash, they are definitely used by fron-

tend developers (willingly or unwillingly). Both landed at the TOP3 of liked and 

disliked solutions which makes me wonder, why would people use solutions they 

don’t like. I have a couple of theories.

From my experience, Redux is widely used by software companies and their custo-

mers because it’s great for large projects requiring complex state management. 

However, Redux has quite a difficult entry threshold. If a developer learns Redux 

from scratch, and it’s something brand new to them, they may not initially like it. 

But, learn they must and learn they want, as almost 20% of respondents want to 

master Redux in the future, even though it’s so difficult. Or maybe people realize 

that in order to score a nice job in frontend development, having Redux experien-

ce is good for their resumes.

As far as Lodash is concerned, the only logical explanation I have is that our re-

spondents must have entered projects with these solutions in place, and they use 

them out of necessity, not fun.

It seems that frontend people move from Moment towards Date-FNS, and that’s 

a good sign. I was shocked that over 40% still use Moment in their project, no mat-

ter what the sentiment. This library has already lost support, and even its offi-

cial website has a note from creators stating that if you’re considering using Mo-

ment, you should probably look for alternatives. Luckily, only 5% of respondents 

are eager to learn Moment in the future, so it’s probable that this library lost its 

moment and is heading towards a decline.

Over the past year, which of the following libraries have you used 
and liked?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Axios

Ramda

Lodash Redux Date-FNS Moment Apollo RxJS Other

Relay



18

Chapter 04 Libraries

State of Frontend 2022   

Axios, our “congeniality” prize winner with over 60% votes definitely entered the 

stability phase. It’s been on the frontend market for a good while, people know 

it well, and it’s more of a “standard” than a “trend”. No wonder, it offers decent 

data download, communication, and general cooperation with the backend. The 

question remains, the Axios naysayers would rather use GraphQL or they just ho-

nestly don’t like working with it?

Having mentioned GraphQL, I need to comment on two more solutions here. Sin-

ce Apollo is used for seamless connection to GraphQL, I thought it will be much 

higher on the “used & liked” category. My hope was revived when I noticed that 

40% of devs want to learn Apollo in the future (which saved it the first spot). That 

means Apollo’s community is steadily growing, and I expect more users of this lib-

rary in the next report.

Apollo, with its easy-peasy configuration is the most famous one here, but maybe 

Relay can be its biggest competition soon. Relay is more complex and works only 

with React and React Native apps but 26% of frontend devs want to learn this 

library. If more people use Relay, the more projects implement it, and that can 

result in bigger engagement. I’ll keep my eye on GraphQL clients because I have 

a feeling that it will be the place where the frontend world can be surprised in the 

future.

Over the past year, which of the following libraries have you used 
and disliked?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Redux

Relay

Moment Lodash RxJS Axios Apollo Ramda Date-FNS

Other



19

Chapter 04 Libraries

State of Frontend 2022   

Which the following libraries would you like to learn in the future?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Apollo

Moment

RxJS Relay Redux Ramda Date-FNS Lodash Axios

Other



20

The design system space is very fragmented. There is no single design system that 

goes beyond 24% of the market. This is a spark difference with React which has the 

large majority of the frontend market. I think that this can simply be explained 

because the choice of the design system for a company is mostly an “artistic” 

one, and no two people have the exact same design tastes.

As a side observation, there might be a possible bias in the results. The survey 

proposes “Material UI / MUI” as a predefined answer, I’m glad to see we are the 

leading option, however, for most people Material UI is synonymous with Material 

Design. So it’s not clear if the respondents chose this answer from a design (design 

system) or code perspective (Material Design React UI library/framework).

 

Chapter 04 Libraries

State of Frontend 2022   

Design systems with no clear winner

Olivier Tassinari
CEO at MUI and co-creator of Material-UI 

Over the past year, which of the following design systems was 
your favorite go-to solution?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Material UI / MUI Tailwind UI Bootstrap Other AntDesign

Vuetify

My own custom solutions



21

Wow, look at SCSS go! If a kid was born the day SASS was released, they’d be le-

arning to drive today. That’s incredible longevity for any software tool, especially 

in the fast-moving world of front-end development tools. Having nearly half of 

respondents say they don’t only use SASS but it’s the favorite is incredible to 

me, and I happen to agree since it’s a favorite of mine as well. I think the syntax 

of it is quite nice, even though I tend to only use a handful of features like nesting 

and light mixin usage. Sass is, in a sense, up against CSS itself these days. I would 

guess variables are one of the top reasons developers reach for Sass, but Custom 

Properties have arrived in CSS and their support is ubiquitous, all but eliminating 

the need for Sass variables. Even nesting has momentum in CSS standards bodies, 

so we’ll see if that one makes a dent in Sass usage as the years tick by. 

Sass is a tricky one though, it doesn’t mean that’s all you’re using. For example, Po-

stCSS (only represented in the „Other” section here) is somewhat designed to be 

used in conjunction with Sass, at least optionally. Similarly with CSS Modules. While 

you can use CSS Modules alone, you can almost just as easily use it with Sass. That 

happens to be a favorite combination of mine, and it’s not particularly esoteric as 

the wildly popular Next.js ships out of the box supporting this combo.

 

Chapter 04 Libraries

State of Frontend 2022   

Styling tools. SCSS eats half of the chart 
pie

Chris Coyier
Founder of CSS-Tricks and CodePen

Over the past year, which of the following styling tools was your 
favorite go-to solution?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Tailwind Styled Components CSS Modules Emotion Chakra

Other Vanilla Extract

SCSS



22

A monster showing for Styled Components as well! What strikes me about this 

is that the question is just about the usage of styling tools, but Styled Components 

all but implies the usage of React as well. So to see this big of a slice of the pie, 

especially combined with Emotion, Chakra, and Vanilla Extract, all of which I wo-

uld guess primarily see usage in a React environment, shows off just how wildly 

dominant React was for participants of this survey. It makes me think of the other 

big JavaScript frameworks a bit. Where are the Vue people at? I don’t see any-

thing specifically called out in Other. They might just… not think about it? Styling is 

a built-in thing in Vue Single File Components land. You don’t make a ton of styling 

tool decisions in Vue, as it’s just there for you. And this brings me back to Sass a bit. 

Just as it’s trivial to use Sass in Next.js, so too can you use easily use Sass in Vue, 

Svelte, or newer meta frameworks like Astro. 

It’s not terribly surprising to see that regular ol’ CSS is barely a blip, knowing how 

heavily JavaScript framework usage is represented here. Once you’re in a com-

ponent-driven architecture, having CSS that is scoped to those components and 

offers additional utility through the availability of JavaScript, it makes sense that 

people take advantage of that, despite the thickening of the stack, as it were.

Tailwind’s popularity also comes as no surprise here. If you asked me five years 

ago if I thought something like Tailwind would become popular, I would have 

said “no”, but I would have been wrong. I’ve heard from countless developers 

that the idea of using HTML classes to style things just clicks for them. I have my 

own suspicions. If done well, the CSS produced by Tailwind is highly likely to be 

smaller (extra important for a blocking resource like CSS) which is a nice perfor-

mance benefit from a tooling choice people seem to like anyway.

Chapter 04 Libraries

State of Frontend 2022   

It’s nice to see tools like Vanilla Extract trying to offer a modern variety of develo-

per ergonomics in styling, and also be very focused on ensuring that good perfor-

mance is the default behavior. Which generally means „extracting” „vanilla” CSS, 

if you follow their naming pun. 

All this makes me think what the results would be if we could see data on, say, 

the styling choices of the top 5000 websites by traffic. Or the choices made on 

the last 5000 websites published on the internet. Or the top 5000 most actively 

developed websites on GitHub. Would it be similar? It’s hard to say whether they 

would be completely different. But I think of that staggering statistic following 

WordPress around: 43% of the internet. It’s not that you can’t build a JavaScript 

framework-powered WordPress site, some people do, but I’m sure a tiny slice of all 

those WordPress websites. So what are they doing? Are they the big Sass users? 

Wouldn’t you think a decent amount of them are vanilla CSS just because Word-

Press itself doesn’t offer any built-in styling tools? Or maybe most of those sites 

aren’t really built by developers, but just self-serve deployments? 

It’s certainly fascinating to watch styling tool choices change over the years. The 

only thing I’m quite certain of is that a few years from now, there will be surprises 

on this survey that would be impossible to guess today.



23

It’s great to see this topic being covered in the State of Frontend survey. You can 

see that more people are getting interested in using online code editors for some of 

their work, which is super exciting. Cloud development will only continue to grow, 

and I expect to see even more programmers and companies moving their deve-

lopment environment from the local to the cloud.

The survey confirms what we’ve already noticed at CodeSandbox. We’ve seen 

more and more people moving their development online, which also suggests im-

proved general interest in cloud development. Over the past year alone, people 

have created over 12 million sandboxes, which makes for half of our total sand-

boxes ever created! 

I’m very excited about the future because I believe that the cloud will make so-

ftware development more accessible and collaborative. And I’m very happy to see 

that interest reflected in frontend developers’ answers. As for my expectations for 

the future here, moving to cloud development may happen much sooner than we 

all think…

Chapter 04 Libraries

State of Frontend 2022   

Development tools influenced by cloud

Ives van Hoorne
Co-Founder of CodeSandbox Over the past year, which of the following development tools 

have you used?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

My own custom solutions

Prettier Webpack TSLint Vite Esbuild Rollup

Parcel Other Bun

Eslint



Typescript continues to make 
web development less 
frustrating

Marcin Gajda
Frontend Team Manager at The Software House

Chapter 05   Typescript



25

TypeScript doesn’t intend to stop gaining more and more publicity with each pas-

sing year. You can especially see it, if you compare 2022 answers with those from 

two years ago. The number of people using TypeScript raised over 7 percentage 

points, already being at 84%! 

We all can probably agree that TypeScript is universally embraced by developers, 

and the industry won’t let go of this technology in the upcoming years. How did it 

happen though? In online discussions, people often praise TypeScript for how it 

prevents a whole class of bugs before they even happen. That in turn, makes de-

velopment faster and apps more reliable. 

I don’t intend to argue here but since you asked me what really makes so many 

developers love TypeScript, I’m going to say that TS made web development way 

less frustrating than it was before. After far too many years of web develop-

ment feeling laborious and painful, frontend developers don’t want to re-live the 

experience of switching between the code editor and the browser back and forth 

multiple times to guess why “undefined is not a function”. These “snow is white” 

kinds of errors were mostly caused by misspelled variables or misplaced parame-

ters.

Chapter 05 Typescript

State of Frontend 2022   

Over last year, have you used Typescript?

Yes

15.9%

84.1%

No



26

Chapter 05 Typescript

State of Frontend 2022   

Then TypeScript came to our rescue, being baked by Microsoft and armed with  

the support in all major IDE. Writing code on frontend feels way more controlled 

and straightforward now. Personally, I also enjoy the extra layer of fun added to 

the whole development process by the possibility to design data structure shape 

before writing the code that utilizes it.

TypeScript not only attempted to win over developers’ hearts but also fought its 

way to become the frontend industry standard, not only for Angular projects. It’s 

safe to say that new commercial projects NOT using TypeScript at all have alrea-

dy been scarce, and it will only be harder to find them in upcoming years. 

If you compare the questions about using TypeScript with company type, it’s cle-

ar that the tech industry confidently moves towards Typescript in their software 

projects.

To support my claim further, people who didn’t touch TypeScript over the past 

year work more often in non-tech companies or government organizations. 

Nothing surprising, because these organization types are infamous for being set 

in their ways and sticking to older solutions. This in turn often infuriates frontend 

developers, who don’t enjoy working with obsolete technologies. The results: ~13% 

vs ~20% for the more tech-related and dynamic competition



27

As far as the future of TypeScript is concerned, predictions changed quite a bit. In 

2020 it was a close call between the top three options. The respondents didn’t give 

a definitive answer about what will happen between TypeScript and JavaScript. 

My bet is that two years ago we still weren’t exactly sure if TypeScript is just a 

temporary fad or something that will stay with us for longer. Considering how 

much constantly happens in the world of frontend, and how often new solutions 

emerge, a bit of caution is perfectly understandable.

The State of Frontend 2022, brought a clearer answer. People who think that 

TypeScript will become the primary solution for web development are in the 

great majority with 43%. I know, the result is still not over 50% yet, but if you were 

playing „Who Wants to Be a Millionaire?” and that was your result in the “Ask the 

audience” question, wouldn’t you bet on it? I think the main reason behind the shi-

ft becomes clear when we look at new, emerging solutions. There’s a noticeable 

increase of libraries written in TypeScript natively, and most of the new develop-

ment tools come with out-of-the-box TypeScript support.

 

Last but not least, we could observe in real-time how the “JavaScript will turn into 

something like TypeScript” question slowly comes to life. In March 2022 it became 

surprisingly more realistic than ever when Microsoft announced their proposal to 

introduce the type syntax from TypeScript in JavaScript. 

It means the browsers will understand TS but won’t support type checking. For 

now, the frontend community gave the proposal a cold reception and I don’t think 

it has a chance to be accepted into the ECMA standard in the current form. It also 

doesn’t mean that JS will morph into a TS clone, but definitely, something is in the 

air.

Chapter 05 Typescript

State of Frontend 2022   

Everyone will forget about TypeScript 1%

JavaScript will remain the frontend standard 11.8%

JavaScript will turn into something like Typescript 16.6%

JavaScript and TypeScript will be equally popular 27.6%

TypeScript will overtake Javascript and become a new  
frontend standard 43%

In your opinion, which of the following future of Typescript  
scenarios seems most likely to happen?

Future of Typescript



SSG solutions are on the rise
Chapter 06  Static-Site generators

Samuel Snopko
Head of DevRel at Storyblok



29

Chapter 06 Static-Site generators

State of Frontend 2022   

Increasingly, huge companies are not afraid to switch to headless CMSs with SSG 

- Jamstack solutions are no longer a new cutting-edge technology, and they don’t 

seem experimental to them anymore.

This change is leading to a rise of SSGs with unbeatable performance and caching, 

and we can already see many new frameworks like Remix, SvelteKit, and Astro, 

who want to grab their piece of the market cake. I think this new competition will 

lead to some exciting surprises in the following months, and the leading trinity 

of Next, Gatsby, and Nuxt will need to evolve even faster!

The most important feature will be the incremental generation, which will soon 

become a must for every framework. This makes faster and easier - without the 

need to regenerate the whole website, but only the portion that needs to be up-

dated. Additionally, I expect a massive jump in localization and personalization 

strategies, which will become internal parts of the frameworks.

Over the past year, which of the following static-site generators 
have you used?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Next.js None Gatsby Nuxt.js Other Hugo Vuepress



30

Chapter 06 Static-Site generators

State of Frontend 2022   

Hugo 2.4%

Nuxt.js 5.8%

Gatsby 8.4%

Next.js 37%

None 37.7%

Which of the following static-site generators is your favorite to 
work with?

Other 6%

Vuepress 1.2%



Deployment. Will mass migra-
tion to the cloud mean the end 
of traditional hosting?

Gift Egwuenu
Developer Advocate at Cloudflare

Chapter 07  Hosting



32

Chapter 07 Hosting

State of Frontend 2022   

The first thing that I’ve noticed is that more folks are moving away from the tra-

ditional hosting on their own servers, as the result dropped by 8% points compa-

red to 2020 answers. 

Personally, I think this was always bound to happen and I don’t think it’s a bad 

thing that we are moving away from traditional hosting. Developers are looking 

to optimize their time and productivity and if they can find a way to take out most 

of the work required for initial setup, they will adopt those services. And that’s 

what I see happening here, I think in a long run more people will move away from 

it but will it ever stop existing? No, I don’t think so, some systems still require very 

custom hosting that they may not get from a provider so they choose to make 

their own. The migration is something that will continue to happen though as clo-

ud hosting evolves.

The alternative, moving frontend hosting towards cloud providers, received a 

combined result of 64%! Amazon Web Services still remain top of the list with 45% 

responses, which is unsurprising considering AWS is one of the biggest cloud pro-

viders on the market. 

GCP and Azure take the back seat in this year’s results, both falling behind AWS 

and landing around 13% of votes each. Amazon must be doing something differen-

tly, and I genuinely wonder, would the results be different if Azure pushed Azure 

Static Web Apps more?

It’s also quite interesting for me to see increased adoption of services like Vercel 

and Netlify. Over the years, these companies have proved to be on top of their 

game by offering cutting-edge services and including a free tier for developers. 

In turn, that creates a low entry barrier for anyone willing to learn and use their 

services to host their projects.

Where do you deploy your applications to the most often?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

My own / client’s server Vercel Netlify Google Cloud Platform Azure

Other Cloudflare Pages

Amazon Web Services



33

Chapter 07 Hosting

State of Frontend 2022   

I also think that Cloudflare Pages should be proud of themselves. The solution is 

relatively new to the survey, yet nearly 4% of respondents chose CP as their pre-

ferred hosting option. What’s more, even Cloudflare Workers made a frequent 

appearance in the “other” section. This only means that frontend developers are 

open to experimenting and adopting new services for deploying serverless appli-

cations.

CI/CD. Frontend connecting all stages 
of the Software Development Lifecycle

A majority of frontend folks (80% of respondents answered “yes”)  add Contino-

us Integration to their workflow. I believe this is great news, and it shows that 

people tie up all stages of SDLC (Software Development Lifecycle) into their 

workflows.

As far as individual solutions are concerned, GitHub Actions takes the front seat in 

this survey, with a result of over 56% in 2022 compared to 35% in 2020. This shows 

that more frontend people shifted to GitHub Actions in their day-to-day. Maybe 

it’s because GitHub pushed for Actions being the go-to option when you think of 

CI. The influence of being affiliated with Microsoft could be a reason why it re-

ceived more love over the years.

Do you use Continuous Integration?

Yes

20.3%

79.7%

No



34

Chapter 07 Hosting

State of Frontend 2022   

From my personal experience, these results seem true indeed. I used Circle CI 

and Travis CI in the past, but now I default to GitHub Actions when I need to 

set up Continuous Integration.

We could also see more solutions (not included in set answers in the survey) pop-

ping up in “other” options. I’m talking about services like Teamcity, Click Deploy, 

Envoyer, etc. being the preferred options for Continous Integration. To me, this 

means that there are some niche providers that you may not have heard of but 

they still must be stable and dependable because developers do pick them as a 

go-to choice for CI.

Which of these Continuous Integration solutions have you used 
over the last year?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Jenkins GitLab CI Circle CI Azure DevOps/Pipelines BitBucket Pipelines

Travis CI Other

GitHub Actions



Luca Mezzalira
AWS Principal Solutions Architect

Micro Frontends are on their 
way to maturity

Chapter 08  Micro Frontends



36

Chapter 08 Micro Frontends

State of Frontend 2022   

Micro Frontends are embraced by a variety of companies nowadays. Among 

others, Netflix, PayPal, and Amex have implemented this architecture approach in 

some of their systems. I’m convinced that this is the right path for micro-fron-

tends maturity. Large corporations embracing this architecture will only pro-

vide a faster feedback loop for the community highlighting best practices and 

anti-patterns.

Moreover, the industry discusses micro-frontends more and more. Nearly every 

frontend conference I’ve seen has at least one speaker, panel, or case study pre-

sentation on this very topic.

The community started to have more mature tools like Single-SPA or Module Fe-

deration for client-side rendering applications but we are still finding “the way” on 

the server-side rendering.

Over the past year, have you used micro frontends?

Yes

24.6%

75.4%

No



37

Chapter 08 Micro Frontends

State of Frontend 2022   

There is still a lot to do and discover. For instance how to deploy micro-frontends 

in production using a canary release or blue-green deployment? Or how to leve-

rage partial hydration when using server-side rendering frameworks like Preact 

or React 18? 

Having said that, micro-frontends have definitely moved forward in comparison 

to two years ago, and the aforementioned results prove it clearly. I think in the next 

few years, even more organizations will embrace this approach and new tools and 

patterns will be shared with and created by the frontend community. 

I am excited to see what the future holds for micro-frontends.

What solution do you use for micro frontends the most often?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Web components Module Federation Other Bit SystemjsSingle SPA



What’s up with 42% to 
WebSockets? I’d expected it to 
hit less than 5%

Jay Phelps
Web Platform at Netflix

Chapter 09  Browser technologies



39

Chapter 09 Browser technologies

State of Frontend 2022   

Historically, I (and others around me) have only needed these APIs for more advan-

ced, native app-like experiences. So the results are quite surprising, especially 

42% of respondents who have used WebSockets, whereas I would have guessti-

mated less than 5% would actually have had a need. I wonder what the prima-

ry motivators behind picking WebAssembly were: performance, possibility to use 

other languages besides JavaScript, lack of better options?

I have a few theories. The simplest explanation is that some sort of sampling error 

still does exist, or that the interpretation of the question by myself and the respon-

dents is not necessarily inline. Had the developer used the given technology busi-

ness-wise, on the production website, or they had simply experimented with them 

on private coding „out of work”. That would help make up the difference between 

my expectation and the results.

However, I think the real reason is a combination of factors, including browser 

technologies being in fact used more often than ever before. WebSockets are 

used even in cases where real-time isn’t necessarily required, with Firebase-like 

platforms as popular as ever. The relative usage order of various technologies 

also seems plausible.

The File System Access API is still pretty new (e.g. not yet supported by Firefox) so 

I’d be curious how many sites using it are still falling back to the good-old <input 

type=”file”>.

Over the past year, which of the following browser technologies 
have you used?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

WebAssembly

Clipboard API Geolocation API None File System Access API WebGL

Fullscreen API WebRTC API Other WebHID API

Websockets API



40

Chapter 09 Browser technologies

State of Frontend 2022   

I have a personal admiration for WebAssembly. It’s still young, and some impro-

vements are necessary (especially client-side in the browser) but WebAssembly is 

the first truly standardized bytecode. That’s an attractive feature for lots of use 

cases, not only within the browser but rather server-side or offline apps. Since 

WebAssembly is a compilation target, virtualized machine code, it is not intended 

to be written manually in the same way that x64 or ARM. That means most deve-

lopers are compiling to WebAssembly from some other higher-level language.

I’d be curious to know the popularity of such languages these days. I expect the 

first three to be C/C++, Rust, and AssemblyScript, with an honorable mention for 

Golang since its popularity in the WebAssembly community has taken off too.

In the long run, tooling should make WebAssembly an implementation detail that 

most developers don’t really need to care about. Much like iOS developers don’t 

often care that they’re compiling to ARM. But standardization and community 

growth are slow processes, so I think we’re still more than a decade away from 

that reality.



Browser editors are on the rise. 
Is this just an effect of remote 
work?

Santosh Yadav
GDE for Angular, GitHub Star, Auth0 Ambassador

Chapter 10  Code management



42

Chapter 10 Code managment

State of Frontend 2022   

Desktop code editors

Visual Studio Code has been a desktop code editor leader when it comes to fron-

tend development, the team has been doing lots of improvements to make it fa-

ster and work on cross-platform. The ability to use VS Code online with GitHub 

has disturbed the online editor war too, if you are not aware you can press “.” in 

GitHub and it will launch VS code online for you. No one thought it would enter this 

market too, post launching codespaces.

It will take some serious efforts to take the crown away from VS Code when it co-

mes to the desktop editor. Developers have been creating some amazing exten-

sions for VS Code that give a clear advantage as compared to other Code Editors 

like WebStorm.

Online code editors

For online code editors, I am seriously amazed by what StackBlitz has been doing. 

Especially introducing the web containers, so one can run NodeJs in a browser is 

amazing!  CodeSandbox has been there for years as one of the leaders, but I can 

see serious competition from Stackblitz. You can do a lot of stuff using Stackblitz 

after web containers, notably running your npm scripts online. I love the deploy 

options available on CodeSandbox – you can deploy on Netlify or Vercel with a 

click of a button which is cool.

Online Code editors’ use is only going to rise from here I think. Many companies 

are going fully remote now and online editors are a great option to reduce the 

costs. You don’t need to invest in high-end laptops - CodeSandbox or StackBlitz 

can do it for you. Every developer knows how painful it is to set up the local dev 

environment, and online code editors can do it in a few minutes.

What’s your favorite desktop code editor?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

JetBrains IDE (eg. WebStorm) Vim Sublime Other Atom

Brackets

Visual Studio Code



43

Chapter 10 Code managment

State of Frontend 2022   

Version control providers

For version control, GitHub is the clear choice for many developers, and no 

wonder – the variety of features GitHub has introduced over the years has been 

astonishing: GitHub Action, CodeSpaces, VS Code Online, the new GitHub code 

search, co-pilot AI… I can go on about how all these features make developers’ 

day-to-day life easier. GitHub Actions removed the dependency on external pro-

viders for Open Source developers and they get the free builds for Open 

Source work. 

Other 4.3%

Replit 4.3%

StackBlitz 15.1%

CodeSandbox 34.8%

None 41.5%

What’s your favorite browser code editor

Gitlab and Bitbucket offer the advantage of a self-hosting option, which many 

enterprises desperately need. But nonetheless, GitHub is home to Open Source 

Developers, and it will only grow and the State of Octoverse is a clear indicator of 

that.

What’s your favorite version control provider?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

GitLab BitBucket None Other PerforceGitHub



Positive surprises in the state 
of testing: frontend developers 
have never tested more!

Dawid Dylowicz
Staff Test Engineering Lead at Onfido & curator at Software Testing Weekly

Chapter 11   Testing



45

Chapter 11 Testing

State of Frontend 2022   

I’ve been working in software testing for nearly a decade now and testing fron-

tend applications has always been one of the most popular activities done by 

Quality Assurance folks. But what about developers? This report tells me a sur-

prising story.

The most staggering result to me is the shift in testing responsibilities from te-

sters to devs. It turns out that in 88% of cases, developers are at least as involved 

in testing as QAs.

Only QAs 2.3%

Mostly QAs 9.5%

Mostly developers 20.3%

Only developers 24.5%

Developers and QAs 43.4%

Who’s responsible for testing in your software development 
teams?

Have you performed software tests yourself over the last year?

Yes

19.6%

80.4%

No



46

Chapter 11 Testing

State of Frontend 2022   

One of my core responsibilities as a Test Engineering Lead is encouraging our 

Quality Assurance people to become coaches and help developers get involved 

in testing. So I’m delighted to see my own experiences reflected in the survey, 

showing other teams making huge progress in this regard too.

As a curator at Software Testing Weekly, I noticed that a lot of testers and devs 

choose JavaScript for testing. Nowadays, more people write about tools like Cy-

press and Playwright, rather than Selenium. 

Other 2.1%

End-to-end UI tests 55.9%

Integration tests 61.5%

Unit tests 91.1%

What kinds of tests have you written yourself?

So I’m not surprised to see that nearly half of the respondents have already tried 

out Cypress. Alongside Jest, it’s the most popular test tool. It suggests a gro-

wing interest in more robust testing and favoring tools with great DX (developer 

experience) and using the same language as for development.

Over the past year, have you used the following testing tools?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

Testing Library Cypress Mocha Other Super TestJest



Good practices are not one size 
fits all - they depend on your 
team

Chapter 12  Good practices

Gergely Orosz
The Pragmatic Engineer, author



48

Chapter 12 Good Practices

State of Frontend 2022   

For project management, 69% of respondents use Scrum or Kanban. Scrum at 

52% is somewhat more common than Kanban - at 33% - and  17% of respondents 

use both. Two out of 3 frontend developers use one of these two methods when 

getting projects done.

Companies where respondents did not report using either of these methodolo-

gies, tend to be mostly tech-first or digital-first companies, which rhymes with 

findings in my article How Big Tech runs tech projects and the curious absence of 

Scrum.

Unit testing is widespread among frontend engineers with close to 75% of re-

spondents writing these kinds of tests. Integration and end-to-end tests are also 

common, with about half of respondents having written these tests.

Code reviews are common enough within the industry, with 80% of respondents 

mentioning they follow this practice. What was interesting to dig into is where code 

reviews are less likely to be a practice? Going through those who don’t do code re-

views, there is a strong connection between the size of the frontend engineering 

team and whether engineers do code reviews:

Engineers working at large companies are the are more likely to do code 

reviews.

Engineers working at companies with 50 or fewer employees are twice or 

more as likely to not do code reviews than those working at larger compa-

nies.

One-person companies - understandably - are the most likely to not do 

code reviews.

What methods/good practices do you use in your frontend  
projects?

90%

80%

70%

60%

50%

40%

30%

20%

10%

100%

CI & CD Versioning Scrum Git Flow Kanban Containerization

Other

Code Review



49

Chapter 12 Good Practices

State of Frontend 2022   

Much of the above should not be surprising: the more engineers there are, the 

more value code review bring not just in spotting issues, but also in spreading 

knowledge better.

CI/CD is widespread within the industry. It’s curious to see about a quarter of 

engineers not using CI / CD.

 

Not writing unit tests, not having CI/CD, and not doing code reviews are corre-

lated. 

This was one of the more interesting findings of this survey. Engineers who don’t 

do two of writing unit tests, having CI/CD, and code reviews are likely to not do all 

three.

This finding should not be a huge surprise, as these three tools are connected. CI/

CD makes less sense when there are no automated tests to run. Most code review 

tools integrate seamlessly into CI/CD tools.

Still, this finding suggests that by introducing unit testing and setting up CI/CD, 

code reviews will likely follow. Or, perhaps the other way: engineers who want to 

do code reviews tend to write tests and will set up CI/CD.

Trunk-based development,

Feature flags and feature toggling,

Pair programming,

Linting,

Code style guidelines,

JSDocs,

Stakeholders Map,

Design sprints,

Prototyping,

Semantic releases,

“Fix-them-together days”,

Visual regression tests,

Extreme Programming.

Engineering practices worth mentioning which survey respondents brought 

up are below. Use these as inspiration to try out other approaches, if you’ve not 

done yet:



50

Chapter 12 Good Practices

State of Frontend 2022   

What is important for SEO on the frontend side? 

For starters, the responsiveness. It is a must for most projects that are meant 

to work on different devices. Recently some platforms (Twitter) started hinting at 

the retirement of AMP (another approach to SEO-friendly mobile version for web 

apps). This makes RWD even more important.

When it comes to performance, this can obviously include many things. From an 

SEO perspective, it’s all about PageSpeed measured by not only speed but also 

Page Experience. In November of 2020, Google added three new page experien-

ce signals that makeup what they called Core Web Vitals. These became imple-

mented as Google’s ranking algorithm around June 2021: Largest Contentful Paint 

(LCP), First Input Delay (FID), and Cumulative Layout Shift (CLS). All three of them 

are almost the sole responsibility of the frontend.

Next is User Experience, which is a very broad subject. However, one thing is cer-

tain: a lot of SEOs already use the term SXO to indicate that the typical Search 

Engine Optimisation must include User Experience. 

SEO is still the underdog - but for how 
long? 

Rad Paluszak
CTO at Husky Hamster

The Search Experience Optimisation, then, is about combining the technical 

optimization for Google (and other search engines) together with making the 

website best for the Users. What can be better to serve the users in the exact way 

they expect, behave, and prosper in our app’s ecosystem?

But there’s also another very prominent upside to this. Happy users = retaining (or 

returning) users.

Good UX affects conversions, helps retain the users, or makes them want to 

return for more experience. All of these usually mean better monetization, which 

is at the center of most commercial apps. 

How often do you take care of application’s...

28% 23% 22.5% 16.1% 10.4%
Search Engine
Optimization

RarelyNever Sometimes Often Always

Matt Diggity
Founder and CEO of 
Diggity Marketing



51

Firstly, I will start with the very important notion that accessibility should be alre-

ady considered at the early stage of gathering product requirements i.e. do you 

aim for WCAG 2.1 AA standard, and do your customers expect this implementa-

tion. Back to the results! 

I was shocked that the “always” answer was as low as 17%! This leads me to 

think that frontend developers are still reactive, rather than being proactive in 

their approach to accessibility. What I have seen in the past few years is that en-

gineers are now proactively running automated accessibility tools as part of their 

CI/CD which is certainly helping to upskill engineers and other key members of the 

software team.

The surprising aspect for me is that accessibility is not deemed as important as 

user responsiveness, performance, or user experience. I have a feeling that now, 

being aware there can be legal ramifications towards companies due to poor ac-

cessibility of their products, I expect this to change in the future. 

Chapter 12 Good Practices

State of Frontend 2022   

Accessibility

Dileep Marway
technology leader, educator & author

Comparing this with the question about taking care of accessibility from 2020 - 

given that the categories are somewhat a blanket ‘yes’ or ‘no’ - I feel that most 

frontend programmers feel they care about accessibility, though in most cases it 

will only be an ad-hoc review or audit.

I hope in the upcoming years we see accessibility like security, and we will design 

software products with accessibility in mind. Similar to how security has been of 

utmost importance in the past few years.

How often do you take care of application’s...

9.2% 20.1% 26.5% 27.1% 17.1%
Application
accessibility

RarelyNever Sometimes Often Always



52

User Experience is often the last consideration after things go wrong. Since func-

tionality comes first, then user interfaces to accommodate those functionalities 

come second. Therefore, user experience is an expensive and timely exercise that 

only occurs in larger, specialized companies. 

While the majority of respondents still prefer to use their own design systems with 

styling such as SCSS, the UX requirements still often fall upon the programmers 

who are simply given a feature to implement without any storyboarding or user 

flow examples.

Testing is such an important task in coding that nobody can imagine anymore that 

something could be released without being properly tested. The same goes for 

user experience testing which in my option, should be another element written into 

the workflow of CI/CD. 

Sometimes users fail to complete a task because of CTR failure. But just as often 

the task itself is being filled with errors that haven’t been spotted because the-

re was no user experience testing involved. 

Chapter 12 Good Practices

State of Frontend 2022   

User Experience, responsiveness & 
performance

Adrian Twarog
“Development & Design” creator

The same goes for Code Reviews versus Design Reviews. A design review should 

always consider User Experience with iterations to improve not just the speed 

of compiles and performance of code tasks, but also user tasks (such as time 

for a user to complete an action via the UI). 

I’ve come to a conclusion that the 2020s have brought greater consideration to 

testing and reviewing, especially in code, and these same considerations should 

be applied to user interfaces and user experience as they are just as vital to the 

success of any system.

How often do you take care of application’s...

0.7% 1.9% 9.4% 32.4% 55.7%
User
Experience

1.5% 4.7% 13.2% 30.2% 50.3%
Responsivness

1.2% 4.6% 20.7% 37.9% 35.7%
Performance

RarelyNever Sometimes Often Always



53

I’m actually pleasantly surprised by some of these results. Sometimes it seems 

like the primary focus of developers is their own development experience, even 

at the expense of the user’s experience. These results prove otherwise. Deve-

loper experience is input to UX, and that’s how it should be prioritized. If we’re 

not building software for the user’s experience, then what are we even doing? 

I’m unfortunately not surprised by the results for accessibility. At least we’re being 

honest with ourselves. Acknowledging our shortcomings is the first step to impro-

ving them! Hopefully, these results will be a wake-up call for us to remind ourselves 

that accessibility is an important input to the user experience for a great number 

of users (both those using assistive technologies and those not). In fact, for some 

users, the only way they have any “experience” at all with apps you build is if you 

account for accessibility, so we would do well to act accordingly.

Chapter 12 Good Practices

State of Frontend 2022   

Who came first, the user or the 
developer?

Kent C. Dodds
Remix Co-Founder

How often do you take care of application’s...

2.5% 5.8% 18.4% 37.2% 36.1%
Developer
Experience

RarelyNever Sometimes Often Always



Marek Gajda
CTO at the Software House

The frontend may be entering 
a stability phase

Chapter 13  Future of frontend



55

The first thing that I’ve noticed behind the numbers is my favorite sin(x)/x 

function and its relation to programming in general. Software deve-

lopment is still at an early stage, a toddler among industries. There are 

evangelists who proclaim that everything has already been said in to-

pic X, hence current methods should be considered standards. A minute 

later heated discussions start, with people having 180° opinions about 

the subject, so the technology shifts to Y. Then lo and behold, the first 

method is making a comeback with slight adjustments that prevent it 

from being too extreme and closer to the “center”. After that, the Y fans 

adjust their solutions to be closer to “central opinion”. Eventually, two 

extremes become a “compromise” that turns into something of a stan-

dard. It’s called the annealing of a function (yes, I wanted to be a maths 

teacher back in the day). Just take a look at the graph below. 

It seems that frontend development is entering a more “stable” phase. 

Some issues like accessibility or server-side rendering are not up for di-

scussion anymore. However, a few years ago, frontend was at the begin-

ning of this path, methods reflecting completely different visions, ideas, 

and approaches. Everybody in IT knows the “new frontend framework 

every day” jokes. But there’s less of that, and we’re at the point where 

the sin function is slowing down and flattening, and the stabilization pro-

cess begins. 

Let’s break down some examples of trends stabilizing that I can pick up 

from the survey responses.

Chapter 13 Future of Frontend

State of Frontend 2022   

In your opinion, which of these trends/solutions will rise in 
popularity, and which will be pretty much dead in 2 years from now?

42.4% 34.7% 9.1% 13.8%GraphQL

39.4% 30.8% 4.8% 25.1%Headless CMS

58.4% 27.9% 1.5% 12.1%Component-driven  
development

60.6% 24.8% 3.3% 11.3%Cross-platform applications

63.1% 30.5% 0.4% 6%Accesibility

23.9% 37.1% 8.6% 30.5%Atomic design

No changesGain popularity Die No opinion

JAMstack

Micro frontends

Online page builders

Progressive web  
applications

Server-side rendering

Web components

WebAssembly

26.5% 29.8% 10.8% 32.9%

37.2% 23.5% 13.3% 26.1%

29.8% 35.8% 11.8% 22.6%

42.6% 34.4% 11.8% 11.2%

60.5% 27% 4.8% 7.6%

45.2% 27.1% 11% 16.7%

45.5% 25.4% 5.6% 23.6%



56

Back in 2020, 20% of respondents predicted the death of micro fron-

tends and it seems like they’re not going anywhere. Micro frontends 

still have borderline opinions, and I’m wondering what the compro-

mise will look like in the future. Luca Mezzalira in his “Micro-frontend” 

book presented 12 different concepts for micro frontends which me-

ans that the solution itself is still crystallizing internally. I suspect that 

people who vote “for” micro frontends support a different concept 

than those who vote “against”. 

Server-side rendering is already heavily flattened (60% vs 5%) but I’m 

quite surprised that this is where the stable axle landed. History les-

son: pages were initially rendered on the backend. Then people went 

“It’s kinda silly making rounds all over the internet, being incredibly 

slow, a browser on the front should do it”. Then the opposition went: 

“Okay but it’s still kinda slow, maybe we should go back to the bac-

kend?” To which the response was “Hey, what about a bit on a server 

and a bit on the client-side?” So we’re basically back to square one, 

that’s exactly how it worked 20 years ago. But this time, we were able 

to modify the method after years of new experiences, experiments, 

and changing things internally. 

My guess is that domain-driven design is next in line. 9 years ago the 

idea was to separate the business logic from technical issues (routing, 

databases, performance, optimization, etc.). There was code that 

described what the app does and engineering&technical code. 

Everybody was crazy about the idea but hardly anyone was able 

to do this. The concept was right, only the timing was wrong - pa-

radoxically, we didn’t have mature enough technology to carry out 

this task. 

Chapter 13 Future of Frontend

State of Frontend 2022   

Graph of the sin(x)/x function



57

Chapter 13 Future of Frontend

State of Frontend 2022   

Currently, this technology is shifting in a way that if someone vocally supports 

DDD, they might be right. We finally got the tools to turn theory into practice and 

separate business logic from technical bits for real. Some solutions on the list abo-

ve, e.g. headless CMS, do exactly that.

Developer empowerment and 
responsibility

Back in prehistoric times, there used to be one gigantic, unified app. When some-

one new entered the project, they were told what and how to do it, and there was 

no discussion or choice. 

Now, if you want to build responsibility and ownership in your frontend team, 

make sure that developers have a lot to say about technology and engineering 

issues. It’s not about the app’s features, it’s about HOW it will be built. Compa-

nies finally began to give developers more autonomy in decision-making on how 

things are done, instead of making important decisions over their heads. Not only 

because frontend programmers earn a lot of money. The more people have to say 

about what they do, the more ownership they feel. 

Among the trends included in the question, we’ve got component-driven deve-

lopment, GraphQL, micro frontends, and web components - all divide apps in 

such a way that everybody in the software team can work on their part which 

later will be incorporated into a larger whole. But every developer is responsi-

ble for their area and determines how it is to be done. This 100% fits the concept 

of broader developer autonomy with countless problem-solving options. 

One app to rule them all. What’s next 
for mobile?

60% votes on growing cross-platform applications (why make two separate apps 

when there should be one app that works everywhere), and 42% on progressive 

web applications (how to make that app work everywhere) may prove that we do 

not need native mobile anymore.

Back in the day, the only reality was native: one app for the web, one for mobile. 

Nobody could imagine a business without a mobile application, even when they 

didn’t need them at all. Even I used to work with a “mobile app generator” client 

who offered simple mobile apps with the store’s name, contact, promotions, loyal-

ty points, opening hours, and address. The only advantage of doing a native app 

out of it was that you could click on the address and Google Maps would open with 

directions. Groundbreaking indeed.

Then, everybody noticed that creating and maintaining mobile apps actually cost 

a fortune. A lot of companies dropped their dedicated mobile teams because pe-

ople figured out that all you need to do is open a website that will scale for smar-

tphones. Not building an entire app from scratch! Then, according to the trend 

stabilization phase, we went through: “Hmm, what about a hybrid?” - “Nope, back 

to native” - “So, you’re back for a new, hybridized hybrid after all?” swings. 

I’m really interested if the progressive web applications trend will stabilize here, or 

are we going to have another pendulum swing. I have a feeling that “one app poli-

cy” will stay with us for longer but I’m not so sure whether PWA is the best solution 

to this problem that we can come up with. 



58

Chapter 13 Future of Frontend

State of Frontend 2022   

Just a reminder that Google came up with Trusted Web Activity (TWA) and they 

tried to set it as a standard. It’s still a fresh topic but I have a feeling it will wither 

soon enough, I don’t see any interest in it from frontend developers, managers, or 

companies. Apple is unlikely to come up with their own “standard” because they 

have an original iOS and they would have to admit that native apps are a thing of 

the past. 

Possible performance problems ahead

I saved the most surprising for last, have you seen WebAssembly’s results? It re-

ally seemed to me that WebAssembly was a solution used for greater optimization 

in a handful of companies, giants like Facebook or Gmail. I was proven completely 

wrong.  46% of respondents predict the growing popularity of WebAssembly, and 

honestly, I’m shooketh! Maybe I live in a world where WA is the last resort option 

when you used the frontend capabilities and hit the wall, since it’s hard to write, 

and difficult to maintain. When all the methods have been used and the solution is 

still too slow, only then you go for WebAssembly. 

We all know that there’s growing pressure for app performance to be constantly 

improved. Are web apps so complicated now that people need last-resort options 

because they have such performance issues that nothing else will do? Should this 

increased WebAssembly interest be the first omen of general performance issu-

es? I’ll definitely follow this topic closer in 2022.



Meet our expert 
commentators

BIOs



60

Sebastien Chopin
CEO at NuxtLabs and author of Nuxt framework. Passionate about 

open source and developer experience. He strives to make the web fa-

ster and create a flow feeling for developers by making the best tools 

to express their full creativity.

BIOs

State of Frontend 2022   

Dawid Dylowicz
Staff Test Engineering Lead at Onfido. Quality Assurance Lead with a 

decade of experience in software testing. Helping over 4,000 testers 

discover the best news via the Software Testing Weekly newsletter.

Chris Coyier
Founder of CSS-Tricks, co-founder of CodePen, co-host of „ShopTalk” 

podcast. A web designer and developer that tries to help other people 

get better at those things.

Gift Egwuenu
Developer Advocate at Cloudflare. She has over five years of expe-

rience in web development and building tools to help businesses grow. 

Her career moved from front-end development to developer relations. 

Gift gladly shares her experience in web development, Jamstack, and 

career-related topics to help other people in the tech industry level up 

their skills.

Marcin Gajda
Frontend Team Manager at The Software House. Marcin is a software 

engineer with a decade of experience in different fields of web deve-

lopment and a handful of delivered products. He aims to make other 

developers write better code and strive to always find the best solution. 

Marcin is also an occasional speaker, a better code review evangelist, 

and a space exploration lover.

Olivier Tassinari
Software engineer, CEO at MUI, and co-creator of Material-UI.

Andrzej Wysoczanski
Head of Frontend at The Sofware House. With many years of expe-

rience in software development, Andrzej found his place managing a 

brood of frontend developers. He loves his jobs for giving him oppor-

tunities to share knowledge and help others enter and thrive in chal-

lenging tech projects.



61

Marek Gajda
CTO at the Software House. A former full-stack developer and an 

experienced Scrum Master who completed projects in PHP, Node, Java, 

Ruby, Python, and .NET. He now leads dozens of product development 

teams and teaches technology managers how to scale up their IT de-

partments effectively.

BIOs

State of Frontend 2022   

Gergely Orosz
The creator of The Pragmatic Engineer, the #1 technology newsletter 

on Substack. Formerly an engineering manager and engineer at Uber, 

Skype, and Microsoft, he now researches and writes about engineering 

management and software engineering topics especially relevant to 

Big Tech and high-growth startups. Gergely is an author of multiple 

books, including “Building Mobile Apps at Scale” and “Growing as a 

Mobile Engineer”.

Ives van Hoorne
Co-Founder of CodeSandbox. Ives loves building things that other 

people can use to build things. He started CodeSandbox as an open-

-source project when he was studying, and as it grew, it became a 

company of 29 people that are now working full-time on it.

Jay Phelps
Web Platform at Netflix. WebAssembly Community Group member 

and RxJS core team alum. Over 20 years of experience across a large 

number of platforms, frameworks, and languages, with a focus on lib-

raries, tooling, and Developer Experience in the last 7 years.

Luca Mezzalira
Luca is a Principal Solutions Architect at AWS, an international speaker, 

and the author of “Building Micro-Frontends”. Over the past 18 years, 

he’s mastered software architectures from the frontend to the cloud, 

providing the right solution for the context.

Dileep Marway
Powerful technology leader of 16 years, who is working towards a CTO 

role. Previously worked for “The Economist” and created an 

”Engineering centre of excellence” in Central Birmingham from scratch, 

eventually growing the technology practice to 80 members in 3 years. 

Having graduated from Aston University, Dileep cares about giving 

back to those who educated him, so he mentors undergraduate and 

MBA students as a board member for TedX Aston University.



62

BIOs

State of Frontend 2022   

Samuel Snopko
Head of DevRel at Storyblok. Samuel is responsible for the developer 

relations at Storyblok. As the headless system’s head of DevRel, he 

spends most of his time buried in the documentation and creating va-

rious experiments and demos. He always defines himself as Creative 

FrontEnd Knight & DesignOps enthusiast with a passion for Jamstack 

and the beautiful web.

Santosh Yadav
Google Developer Expert for Angular, GitHub Star, and an Auth0 Am-

bassador. Co-founder of This Is Learning, author of the Ngx-Builders 

package, and part of NestJsAddOns core Team. Also runs “This is Tech 

Talks” talk show, where he invites the industry experts to discuss diffe-

rent technologies. Santosh works as a software consultant and loves 

contributing to Angular and NgRx. 

Adrian Twarog
A full-stack developer and designer who runs his own agency working 

on a range of small to large projects in the website and app spaces. 

He’s a creator of the “Development & Design” YouTube channel whe-

re he teaches others about current and upcoming trends and industry 

standards in programming and user interface space.

Rad Paluszak
A software developer and solutions architect with 20 years of expe-

rience. A technical mastermind in the SEO industry since 2010. He hel-

ped Matt Diggity run his SEO agency The Search Initiative and recently 

founded Husky Hamster - an outreach link-building company.

Matt Diggity
A search engine optimization expert focused on affiliate marketing, 

client ranking, lead generation, and SEO services. He is the founder and 

CEO of Diggity Marketing, The Search Initiative, Authority Builders, Le-

adSpring LLC, and host of the Chiang Mai SEO Conference.

Kent C. Dodds
Remix Co-Founder, JavaScript engineer, and teacher. He’s also active 

in the open-source community. He likes his family, JavaScript, and Re-

mix.



A product development partner for technology-first companies that build their 
competitive advantage on technological excellence.

Drop us a line at hello@tsh.io, book a free 1-hour consultation with our frontend 
experts, and speed up your development and innovation with the right strategy.

The Software House


