
1

2

Experts
Tim Neutkens
Head of Next.js at Vercel

Yan Cui
AWS Serverless Hero

Marek Gajda
CTO of The Software House

Jessica Jordan
Developer Advocate at .cult

Luca Mezzalira
VP of Architecture at DAZN

Rocky Neurock
Engineering Team Lead
at Honeypot.io

Tomek Rudzki
Head of R&D at Onely

Dylan Schiemann
CEO of Living Spec

Bartosz Skowroński
Head of Design
at The Software House

Guillermo Rauch
CEO of Vercel

3

Authors

Joanna Swoboda
Magdalena Habarta
Kamil Głowiński
Publication Design

Patryk Mamczur
Editor in Chief

Marcin Gajda
Tomasz Kajtoch
Wiktor Toporek
Andrzej Wysoczański
Technical Consulting

4

Table of contents
Developers
Everyday frontend development according to 4,500 experts01 8

Application accessibility
Making the interface friendly for every user07 36

Frameworks
React is king. But who’s the contender?02 12

Hosting
Traditional DCs, cloud giants and frontend-focused hosting03 18

Jamstack
Ecstatic about static04 24

Micro frontends
Do we need microservice revolution in frontend development?05 28

Search engine optimization
It seems that you don’t care about SEO. Here’s why you should06 32

5

Development teams
Frontend development? It’s a team sport08 40

Design
Striving for close collaboration between designers and developers09 44

Quality assurance
Software testing as the cornerstone of software development10 48

Future of frontend
State of Frontend 2021?11 52

6

How many frontend developers
took part in the survey?

Total answers: 4500

941
North America

333
Central and
South America

1082
Western Europe

7

1581
Eastern Europe

73
Middle East

107
Other

1082
Western Europe

303
South
and East Asia

8

01.

Developers
Everyday frontend development
according to 4,500 experts

Patryk Mamczur
Report’s Editor in Chief

9

When we started thinking about the State of Frontend 2020 report,
I had one goal in mind: to find out what the everyday job of a frontend
developer looks like. Considering that there are thousands of frontend
devs around the world, that goal seemed pretty unrealistic. But hey man
– once again, the frontend community surprised us all!

In just a few weeks, exactly 4,500 frontend developers took part in our
State of Frontend survey! I know the number first hand because I was
literally sitting with my finger on a button, observing the growing num-
bers and waiting for the perfect moment to close the survey. I don’t know
about you but for me the number is pretty perfect – as with 4,500 folks
filling in the survey, the State of Frontend 2020 is the biggest report out
there focused solely on frontend development.

All in all, we ended up with over four thousand frontend devs telling us about
their everyday job, the frameworks that they use, the frameworks that they
would like to use (but, for example, the boss won’t let them) and about their

With 4,500 folks filling
in the survey, the State
of Frontend 2020 is
the biggest report out
there focused solely on
frontend development.

10

thoughts on the recent frontend development trends. The results of the
survey are awesome – some of them surprising, many of them inspiring,
all of them showing how the everyday frontend development looks.

To make all this data more accessible, we invited leading software de-
velopment authorities to comment on the results. With their incredible
know-how and big-picture perspective, they made the State of Frontend
2020 report what it is – the most up-to-date source of knowledge on the
modern frontend development.

So, I advise you to stop reading my brag-about introduction, take a look
at the table of contents, choose the topics that interest you the most and
find out what both the developers and the authorities have to say about it.
You won’t be disappointed.

For how long have you been in the frontend
development game?

6.2%
A few months

24.7%
More than

1 year

16.9%
More than
10 years

26.1%
More than
5 years

26%
More than

3 years

11

How would you describe your seniority?

How big is the company you are working in?

2.9%
Chief
technology
officer

0.6%
Other

35.7%
Mid-level
developer

30%
Senior
developer

14.6%
Junior

developer 16.1%
Lead
developer
/ Head
of technology

9.7%
201-500
employees

14.1%
2-10

employees

20.5%
51-200
employees

22.6%
11-50

employees

25.5%
500+
employees

7.5%
I’m a one

-person
company

12

02.

Frameworks
React is king.
But who’s the contender?

Dylan Schiemann
CEO of Living Spec, Co-creator of Dojo

https://www.livingspec.com/
https://dojo.io/

13

When you look at the results of the State of Frontend survey, one thing
is certain: React dominates JavaScript framework mind share today.
However, at the same time, it seems that next-generation reactive frame-
works may soon rise as lean alternatives to the React ecosystem. And it
all has much to do with the rising popularity of TypeScript.

For the past several years JavaScript developers have gravitated towards
React, Vue.js and Angular as the leading frameworks. Relative interest
in Angular has decreased due in part to the long delay in shipping Ivy
and, similarly, interest in Vue has stalled a bit due to the long-awaited
and somewhat delayed Vue 3.0 release. It all helped React dominate the
JavaScript framework market with 74.2% of the survey’s respondents using
it – more than Angular and Vue.js users combined!

It doesn’t mean, however, that the React community lives without a care
in the world. A major change took place recently when developers start-
ed turning away from Redux. We can already see that, when it comes
to state management, more people use React Context API and hooks
(49.6%) than Redux (48.2%) – of course, some of them still use both but
the trend is visible. Also, as a side note, while discussing big JavaScript
frameworks is important, we must not forget about jQuery which, while
rarely talked about, still remains the most widely deployed JavaScript
library on the web.

One thing is certain:
React dominates the
mind share today.

14

And what about the future of JavaScript? We're already seeing significant
interest in next-generation reactive frameworks such as Svelte which
strives to provide reactivity on top of normal DOM structures. Yet another
competitor is Stencil – a framework focused on web components and,
just like Svelte, on efficient compilation. Also, Dojo has re-emerged as
a reactive TypeScript-first framework promising intelligent defaults for
faster out-of-the-box experience.

Some argue that these next-generation frameworks may be great for
smaller applications but require more work when building large apps.
It’s true that all of them provide much smaller default application bundle
sizes as they do not carry the same legacy as frameworks which need to
support features of the past few years. Also, they are very aligned with
modern standards and language features.

And this is where we must discuss the growing importance of TypeScript.
With 77.2% of respondents already using TypeScript and most of them
preferring it to JavaScript, it’s not surprising that frameworks are improv-
ing their support for TypeScript and many start to leverage TypeScript
internally. It’s true for both the already established frameworks (like
React and Angular) and the next-generation ones (Stencil and Dojo in
particular).

With all these changes going on, I’m really looking forward to seeing
what happens next in the realm of JavaScript frameworks. Because one
thing is for sure: React is the king now but there are already a few con-
tenders for the throne waiting.

15

Which of these frameworks have you used during
the last year?

0%

10%

20%

30%

40%

50%

60%

70%

80%

Other
or none

Backbone.jsPreactEmber.jsSvelteVue.jsAngularReact

Which of these frameworks would you like to keep
on using or want to learn in the future?

0

10

20

30

40

50

60

70

80

Other
or none

Backbone.jsEmber.jsPreactAngularSvelteVue.jsReact

74.2%

33.4%
29.9%

11.8%

68.9%

45.2%

36%

26.7%

8.8% 6.7%
0.9%

4,6%

6.5% 5.6% 4% 6.2%

16

Which solutions do you use when it comes to state
management?

Have you used TypeScript during the last year?

22.8%
No

77.2%
Yes

0

10

20

30

40

50

Create
custom
solutions

None OtherEmber
 Data /
Ember

Services

NGXSVue
Event

Bus

MobxNGRXRXJS
subjects

VuexReduxReact
hooks

/ React
Context

API

60

49.6% 48.2%

18%
14.7%

10.5%
8.1%

4.2% 3% 2.1%

9.5% 10.1%
14.2%

17

Do you like TypeScript better than JavaScript?

39.1%
I kind of like

both

6.6%
No

– JavaScript
for the win!

54.3%
Yes, TypeScript
works better
for me

What do you think about the future of TypeScript?

1.7%
In 2–3 years,
everyone will
forget about

TypeScript

14.1%
JavaScript will

remain the
more popular

choice

26.6%
JavaScript and

TypeScript
will be equally

popular

28.4%
TypeScript will
become the
more popular
language

29.2%
In a few years,
JavaScript will
turn into
something like
TypeScript

18

03.

Hosting
Traditional DCs, cloud giants and
frontend-focused hosting

Yan Cui
AWS Serverless Hero
and Independent Consultant

https://theburningmonk.com/

19

The results of the State of Frontend 2020 survey appear especially in-
teresting when it comes to the subject of hosting. When you look at the
numbers, there’s everything: from traditional DCs through cloud provid-
ers to the new kids on the block like Netlify and Vercel.

For me, by far the biggest surprise from these results is that 44.3% of
respondents are still deploying their applications to their own web serv-
ers! Once again, it’s a reminder that there is still a massive market for
traditional DCs and that there’s still much growth opportunities for the
public clouds.

It’s not really surprising that Amazon Web Services is the most popular
deployment target among the cloud providers (38.7%). However, it may
amaze (pun intended) some of you that the AWS’s share is bigger
than those of Google Cloud Platform (14.2%) and Microsoft Azure (11.5%)
combined!

The future of frontend
development calls for
platforms such as Netlify
and Vercel which provide
easy-to-use features for
frontend-focused teams.

20

Also, the fact that Netlify has greater penetration (23.3%) than both GCP
and Azure is a testament to how great a job they have done. It strength-
ens a growing school of thought that the future of frontend development
calls for platforms such as Netlify and Vercel, which provide easy-to-use
and yet powerful abstractions for backend infrastructures for fron-
tend-focused teams.

AWS’s continued push for Amplify would suggest they too see the poten-
tial here. And, on the other hand, one can’t help but feel that GCP had
a missed opportunity with their acquisition of Firebase all those years ago
and their failure to develop it into the market leader it had the potential
to become.

21

Where do you usually deploy
your applications to?

44.3%

38.7%

23.3%

14.2%

11.5%

8.4%

3.6%

5.6%

22

Do you use Continuous Integration?

Which CI solutions have you used during
the last year?

76.6%
Yes

23.4%
No

34.9% 34.7%
33.7%

19.4%

14.9% 14.7%
13.3%

8.7%

23

Do you make use of containerization?

Which container management solutions have you
used during the last year?

61.8%
Yes

38.2%
No

89%

36.8%

17.5%

8.2%
4.5% 4.1%

24

04.

Jamstack
Ecstatic about static

Tim Neutkens
Head of Next.js at Vercel

https://vercel.com/

25

It’s great to see that almost one third of respondents have built
a Jamstack (JavaScript, APIs, Markup) website lately. Also, it makes me
personally happy that more than half of them have used Next.js – a React
framework for Jamstack we’ve created at Vercel. And let me break the
news: we expect an even larger share of frontend developers building
Jamstack websites in the upcoming months.

To me, the appeal of Jamstack is that it lets us do less and accomplish
more. With Jamstack, instead of rendering a page on every request (Serv-
er-Side Rendering), you pre-render a page before request time (Static
Generation). This can be shared by all edges on a CDN (Content Delivery
Network) for optimal performance, higher availability, lower costs and
zero maintenance overhead.

Furthermore, Jamstack frameworks are evolving beyond static
and adopting the flexibility of dynamic. For example, Next.js allows
you to statically generate additional pages or regenerate

Let me break the news:
we expect an even larger
share of developers
building Jamstack
websites in the upcoming
months.

26

existing pages after the production build (Incremental Static Generation).
Even if your app has millions of pages, the initial build will complete
instantly as those pages can be generated incrementally.

Reusable APIs (the "A" in Jamstack) are on the rise too. The market now
has many providers of headless CMS, headless e-commerce, headless
identity, and more. No wonder that frameworks are evolving with these
trends as well. I’m speaking from experience: Next.js has the preview
mode feature which lets you conditionally bypass static generation when
you’re previewing a page on a headless CMS.

I’m very excited about the future of Jamstack. It’s great to see that the
respondents are using a wide variety of Jamstack solutions. It shows that
developers are experimenting with different ideas – and that’s pushing
the Jamstack community forward for a more simple and performant web.

Have you built JAMstack websites?

68.5%
No

31.5%
Yes

27

Which static site generators have you used
during the last year?

54.3%

51.9%

15.5%

9.4%

7.6%
5.6% 4.9% 4.3%

3%

13%

28

05.

Micro
frontends
Do we need microservice revolution
in frontend development?

Luca Mezzalira
VP of Architecture at DAZN,
Author of "Building Micro-Frontends"

https://www.dazn.com/
https://www.buildingmicrofrontends.com/

29

It's incredibly exciting to see how people are embracing micro-frontend
architecture nowadays. We already know, that there are many compa-
nies around the world using micro frontends – just to mention American
Express, DAZN, IKEA, Spotify and Starbucks. Now, with the results of the
State of Frontend survey, we also know that practically ¼ of frontend devs
have already developed micro frontends.

I think that web components are a great, entry-level solution for develop-
ers who are just beginning their adventure with micro frontends –
and the results of the survey seem to confirm that. On the other hand,
there are quite a few new frameworks available for server-side rendering
(e.g., Holocron, Podium and Ara Framework), as well as for client-side
composition (e.g., Module Federation or Single SPA). However, you should
remember that while these frameworks are a great addition to the mi-
cro-frontend community, they should be picked carefully – always looking
at the context in which you operate.

It’s still early days and there
are many lessons to learn
but I believe that micro
frontends will evolve
and reach maturity – just
as microservices did.

30

It makes me happy that only 20% of respondents agree with the state-
ment that micro frontends will disappear in 3 years time (see: Chapter
11. Future of frontend). I also believe that the future looks promising for
micro frontends – they will for sure evolve and possibly reach maturity,
just as microservices did in the past few years. In fact, there are already
interesting movements in the TC39 world with the Realms proposal,
already in stage 2, that could open up new scenarios for micro frontends.

Micro frontends are not a silver bullet but definitely a nice addition to
other architectures such as server-side rendering, Jamstack and sin-
gle-page applications. It's still early days, therefore, there is definitely
more work to do, tons of practices to discover and many lessons to learn.
However, I feel very confident that this architecture, when used in the
right context, can provide a benefit for scaling projects and teams.

Have you used micro frontends?

75.6%
No

24.4%
Yes

31

How do you compose your micro frontends?

34.8%
Web components

34%
Npm packages

19.5%
Server-side

rendering

6.4%
Other

5.4%
iFrame

32

06.

Search engine
optimization
It seems that you don’t care about
SEO. Here’s why you should

Tomek Rudzki
Head of R&D at Onely

https://www.onely.com/

33

Traffic coming from search engines is crucial for any online business.
According to the Wolfgang Digital’s "KPI Report 2020", organic search
is responsible for 43% of traffic. That’s more than direct traffic and paid
search traffic combined! Still, according to the results of the State of
Frontend 2020 survey, as much as 52% of developers don’t care about
SEO.

I'm not here to cast blame. I guess that some of you develop pass-
word-protected, internal applications which don’t have to (or even can-
not) be visible in search results. However, in other cases, if you want
a website that’s successful on Google, you must take care of SEO.
It’s difficult, as SEO specialists don’t always speak the developers’ lan-
guage. Allow me to lend a helping hand.

Firstly, you should always make sure that Google can properly render
JavaScript on your website. For example, it’s possible that you’re acci-
dentally blocking some scripts in robots.txt or using JavaScript features
that are not supported by Googlebot. I recommend that you use the

Once you understand
Google's perspective, it
doesn't take much to build
websites that are both
user-centric and bot-
friendly

34

Mobile-Friendly Test or the URL Inspection Tool – they are free, easy-to-
use tools provided by Google. Using them, inspect the DOM to ensure all
important sections of your page can be properly rendered by Google.

Also, according to the survey, over 11% of developers use dynamic render-
ing (which is essentially detecting search engine bots and serving them
a static version of your page). Google calls it "a workaround for crawlers".
It’s risky, as dynamic rendering sometimes fails – I’ve seen websites pre-
senting Googlebot with blank pages, causing their organic traffic to drop
to zero. Thus, always make sure you thoroughly test if dynamic rendering
works as expected.

SEO is crucial for many businesses, and rendering is just one of many as-
pects of SEO. You have to put as much focus on using proper HTML tags
and designing a logical website structure as you do on choosing between
server-side rendering, client-side rendering and dynamic rendering.
Once you understand Google's perspective, it doesn't take much to build
websites that are both user-centric and bot-friendly.

Do you take care of Search Engine Optimization?

48.4%
Yes

51.6%
No

35

How do you approach the subject of SEO?

60%
Using SSR to render
the whole page

24.6%
Using SSR to

render the meta
tags in the head

section

11.3%
Detecting web

crawlers at the
HTTP server

level

4%
Other

36

07.

Application
accessibility
Making the interface friendly
for every user

Rocky Neurock
Engineering Team Lead at Honeypot.io

https://www.honeypot.io/

37

"Don't break the web", my friend Melanie Sumner often admonishes.
As developers, we're often last in line to promote accessibility in our work.
To escape this pattern, we need a shift in thinking. Accessibility won't
come to us – we must become great teachers to our peers so the web
can work for everyone.

This topic is near and dear to my heart. Not only because I really care
about user experience but also because I suffer from impaired vision.
I can say with surety that the web doesn't work for me. Small text and low
contrast ratios affect me the most but I routinely encounter other frustra-
tions.

For example, non-native components that reimagine select elements
or checkboxes – they can frustrate any user if not done extremely well.

I do think the key to
increased accessibility,
and better experiences
overall, is for those of us
“in the know” to really
teach our counterparts
about the benefits
of accessibility.

38

Firstly, consider how nerve-racking these experiences can be for users
that prefer getting around the web with their keyboards or for users on
mobile devices. Then, think about users with assistive devices. Yes, their
experience is even worse.

It’s good to see that developers who take care of accessibility seem famil-
iar with most of the basic Web Content Accessibility Guidelines (WCAG).
In the future, we should also try to find out how many people test for
accessibility. There is an ever-increasing number of tools to automatically
test accessibility and I wonder if an increase in adoption would correlate
to an increase in the percentage of developers who feel responsible for
accessibility.

I do think the key to increased accessibility, and better experiences over-
all, is for those of us "in the know" to really teach our counterparts about
the benefits of accessibility. If we can free up some of our own time with
automated tests, even better.

Do you take care of application accessibility?

55%
Yes

45%
No

39

How do you take care of application accessibility?

88.9%

76.6%

73.3%

70%

2.6%

40

08.

Development
teams
Frontend development?
It’s a team sport

Guillermo Rauch
CEO of Vercel

https://vercel.com/

41

Frontend development is a team sport – shown clearly with 92% of
the respondents stating they’ve worked as part of a development team
during the last year. However, recent trends in frontend architecture
and deployment infrastructure have influenced how frontend developers
collaborate with their team members. At Vercel, we’ve seen that firsthand.

With the rise of new frontend architectures like Jamstack, frontend de-
velopers can deploy the frontend independent of the backend. They no
longer have to wait for the full backend test suite to run, resulting
in faster iterations. Furthermore, there’s a rise in off-the-shelf backend
APIs (e.g., headless CMS, identity providers, etc.) that can easily be
plugged into your frontend. This enables backend developers to focus
more on developing APIs that are unique to the business.

The next change is connected to working with designers and product
owners. Because Jamstack apps can be deployed quickly and cheaply

Recent trends
in frontend architecture
and deployment
infrastructure have
influenced how frontend
developers collaborate
with their team members.

42

to the CDN edge, it’s possible to assign a unique "preview" URL to every
branch and every commit. We’ve done that at Vercel – now, designers
and product owners can simply click on the preview URL and instantly
see if the changes made by the frontend developer look and work as
intended. Much more effective than sharing screenshots and GIFs.

And, finally, software testing. With the introduction of puppeteer,
Chrome’s headless web browser, combined with serverless compute,
end-to-end testing is now fast and cheap. For example, you can have
services like Checkly run puppeteer tests — written by QA specialists
— against the preview URL. Also, with the rise of Vercel and other frontend
deployment platforms which do all the heavy lifting, DevOps engineers
can spend less time supporting frontend developers.

Overall, we’re very excited about how improvements in frontend archi-
tecture and deployment infrastructure are driving changes in developer
collaboration. We’re looking forward to see more innovations in this
space.

Have you worked as part of a development team
during the last year?

92.3%
Yes

7.7%
No

43

Which of these people were part of your
project development team(s)?

90.8%

71.3%

64.5%
61%

50.8%

46.4%

11.8%

2.9%

44

09.

Design
Striving for close collaboration
between designers and developers

Bartosz Skowroński
Head of Design at The Software House

https://tsh.io/

45

The debate over the role of graphic designers in software development
teams is nothing new – I remember discussing this topic 10 years ago
(maybe even before that). However, it seems that we’re finally in the
place where having a designer working closely with your developers is
not a fad anymore but rather a standard. And we’ve got pretty great
tools to make this collaboration even better.

Probably the most basic categorization of design types in software devel-
opment is: UX design (taking care of the best user experience possible), UI
design (making sure that the interfaces have proper look and feel)
and product design (thinking about the business of the client and of
achieving their business goals). Nowadays, it’s becoming a standard for
software development companies to have two kinds of designers on board
– user-focused UX/UI designers and business-focused product designers.

With product designers
on board, software
companies focus more
and more on creating
strategies and products
that go together
with the business goals
of their clients.

46

The emergence of product designers makes me especially happy.
It means that we, as software companies, focus more and more on the
real needs of our clients, on creating strategies and products that go
together with their business goals. And it seems that clients start to ap-
preciate this change – over 70% of development teams around the world
already have at least one designer on board (see: Chapter 8. Develop-
ment teams). Instead of hiring external, freelance designers, clients go
for inclusive teams where developers and designers (as well as project
managers, software testers and others) can collaborate closely.

In order to make this collaboration fruitful, we need good tools. For years,
designers were using software like Adobe Photoshop as it was hard to
find tools tailored to the needs of designers working in the software de-
velopment business. Fortunately, now we’ve got plenty of those – Figma,
InVision, Sketch and Zeplin just to name a few. They make everything eas-
ier: creating vector graphics, collaborating with other designers, handing
off designs to frontend developers. It’s great that 71.7% of development
teams already use such tools.

Although the love between designers and frontend developers can be
tough, I think that with the popularisation of inclusive development teams
and the emergence of even better design and handoff tools, we can all
look into the future with confidence.

47

Have you used any handoff tools when working
with designers during the last year?

Which handoff tools have you used?

71.7%
Yes

28.3%
No

52.5%

42.2%

23.2%

6.7% 5.4%
8.3%

48

10.

Quality
assurance
Software testing as the cornerstone
of software development

Jessica Jordan
Developer Advocate at .cult

https://cult.honeypot.io/

49

Nowadays, an increasing amount of the functionality of digital products
is implemented on the client-side. This makes it obligatory for us – both
software engineers and QA specialists – to make testing part of our
workflow for developing, maintaining and scaling JavaScript applications.
It's good to see that as much as 80% of frontend devs already perform
software tests and numbers seem to be increasing over the years.

Luckily, the JavaScript ecosystem offers us a wide set of tools to build
robust test suites with sufficient code coverage for the apps we build.
In recent years, we see a trend in the JS testing ecosystem to make testing
continuously easier to use – with a focus on improving developer ergo-
nomics, integration with other testing solutions and many other aspects.

At .cult, many of our software projects – including the application pow-
ering our popular job platform Honeypot.io – are automatically tested
and gain more testing coverage as code bases grow. Additionally, our QA
team manually tests and verifies that the feature requirements are fully
met both in functionality and in design – an essential part of our release
workflow to guarantee excellent user experience.

Even though our teams allocate additional time for manual and automat-
ed testing when developing our platform, we have seen – time and time

Software testing and
modern frontend
development are
inseparable subjects.

50

again – that software testing is a necessary investment in the stability
of our digital products, ultimately leading to increased productivity in our
workflow overall. We trust in tools such as Capybara, RSpec, Ember CLI
and QUnit for unit, integration and end-to-end testing. And, of course,
there are even more solutions out there for you to choose from.

At .cult, we believe that the continued growth of the tooling ecosystem
for testing will soon allow us to cover an even larger part of the product
development workflow through automation. And why do we do that?
Because we know that software testing and modern frontend develop-
ment are inseparable subjects.

Who was responsible for testing in your software
development teams?

37.6%
Software
developers and QA
specialists together

22.5%
Software
developers only

20%
Mostly software

developers

15.7%
Mostly QA
specialists

4.1%
QA specialists only

51

Have you performed software tests yourself
during the last year?

What kinds of tests have you performed yourself?

80.1%
Yes

19,9%
No

88%

56.2% 55.9%

52

11.

Future of
frontend
State of Frontend 2021?

Marek Gajda
CTO of The Software House

https://tsh.io/

53

Am I surprised by the results of the survey and the recent changes
in frontend development? Not really. Am I surprised by how quick these
changes occur? Definitely yes. And that’s why predicting the future
of frontend is not an easy task.

When you look at the state of frontend development, there are some
well-established technologies, tools, good practices – choices that seem
obvious. Let’s take JavaScript frameworks. When you see that there are
more people using React than those using Angular and Vue.js combined
(see: Chapter 2. Frameworks), you realise that React has gained such a
solid reputation that it probably isn’t going anywhere in the near future.

However, in the frontend development community, the line between love
and hate is very thin. And probably the best proof of that is what hap-
pened to Redux. A year or two ago, when you were working with React,
Redux was also “the obvious choice”. But frontend developers got tired
of the problems caused by using Redux and quickly jumped on the React
hooks bandwagon. It’s summer 2020, already more people use hooks
than Redux (see: Chapter 2) and as much as 34% of frontend devs believe
that Redux will be gone in 3 years from now.

In the frontend
development community,
the line between love
and hate is very thin.

54

Also, the world of frontend development is getting more and more com-
plex. Again, a year or two ago, solutions like Continuous Integration and
containerization were considered more of a backend thing. But, in the
meantime, frontend developers realised that they too can benefit from
using those solutions. Now, 77% of frontend devs use CI and 62% use
containers (see: Chapter 3. Hosting) making them a new standard
in frontend development.

So, how will the state of frontend development change in the next 12
months? Will Svelte become one of the 3 most popular frameworks?
Will micro frontends reach maturity? Nobody can tell for sure but, in my
opinion, one thing is certain: we’ll be surprised by how quick some of the
changes will occur.

That said, see you soon in the State of Frontend 2021 report!

55

Which of these trends/solutions will be pretty
much dead in 3 years from now?

34%

30.6%

21.9%
20% 19.5%

18.2%

12.4% 11.8%
10.4%

8.2% 7.9% 7.5%

56
www.tsh.io

http://www.tsh.io

	01_Developers
	02_Frameworks
	03_Hosting
	04_JAMstack
	05_Micro frontends
	06_Search engine optimization
	07_Application accessibility
	08_Development teams
	09_Design
	10_Quality assurance
	11_Future of frontend

